Abstract
In this paper, we develop a new robust spectrum sensing method for MIMO cognitive radios in the presence of heavy-tailed noise. The proposed sensing technique, called measure-transformed covariance test (MTCT), operates by applying a transform to the probability measure of the data. The considered probability measure transform is structured by a non-negative function, called MT-function, that weights the data points. We show that proper selection of the MT-function, under the class of zero-centered spherical Gaussian functions, can lead to significant mitigation of heavy-tailed noise effects. Simulation studies illustrate the advantages of the proposed MTCT comparing to state-of-the-art spectrum sensing techniques.
Original language | English |
---|---|
Pages (from-to) | 4970-4974 |
Number of pages | 5 |
Journal | Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing |
Volume | 2021-June |
DOIs | |
State | Published - 1 Jan 2021 |
Event | 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada Duration: 6 Jun 2021 → 11 Jun 2021 |
Keywords
- Cognitive radio
- Detection theory
- Probability measure transform
- Robust statistics
- Spectrum sensing
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering