Measuring Proton Currents of Bioinspired Materials with Metallic Contacts

Moran Amit, Subhasish Roy, Yingxin Deng, Erik Josberger, Marco Rolandi, Nurit Ashkenasy

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


Charge transfer at the interface between the active layer and the contact is essential in any device. Transfer of electronic charges across the contact/active layer interface with metal contacts is well-understood. To this end, noble metals, such as gold or platinum, are widely used. With these contacts, ionic currents (especially protonic) are often neglected because ions and protons do not transfer across the interface between the contact and the active layer. Palladium hydride contacts have emerged as good contacts to measure proton currents because of a reversible redox reaction at the interface and subsequent absorption/desorption of H into palladium, translating the proton flow reaching the interface into an electron flow at the outer circuit. Here, we demonstrate that gold and palladium contacts also collect proton currents, especially under high relative humidity conditions because of electrochemical reactions at the interface. A marked kinetic isotope effect, which is a signature of proton currents, is observed with gold and palladium contacts, indicating both bulk and contact processes involving proton transfer. These phenomena are attributed to electrochemical processes involving water splitting at the interface. In addition to promoting charge transfer at the interface, these interfacial electrochemical processes inject charge carriers into the active layer and hence can also modulate the bulk resistivity of the materials, as was found for the studied peptide fibril films. We conclude that proton currents may not be neglected a priori when performing electronic measurements on biological and bioinspired materials with gold and palladium contacts under high humidity conditions.

Original languageEnglish
Pages (from-to)1933-1938
Number of pages6
JournalACS Applied Materials and Interfaces
Issue number2
StatePublished - 17 Jan 2018


  • gold
  • palladium
  • palladium hydride
  • peptide nanofibers
  • proton conduction

ASJC Scopus subject areas

  • General Materials Science


Dive into the research topics of 'Measuring Proton Currents of Bioinspired Materials with Metallic Contacts'. Together they form a unique fingerprint.

Cite this