TY - JOUR
T1 - Mechanism of mitigating organic fouling on an electro-conductive membrane under anaerobic conditions and cathodic operation
AU - Dan Grossman, Amit
AU - Qi, Siyao
AU - Aregawi Gebretsadkan, Angesom
AU - Euni Beyioku, Olanrewaju
AU - Turkeltaub, Tuvia
AU - Shames, Alexander I.
AU - Oren, Yoram
AU - Ronen, Avner
AU - Bernstein, Roy
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/5/1
Y1 - 2024/5/1
N2 - Anaerobic electroconductive membrane (ECM) bioreactors are promising wastewater treatment technology, yet their organic antifouling mechanism remains unclear. This research investigated the impact of reactive oxygen species (ROS) oxidation, pH alteration, and electrostatic repulsion on carbon nanotube-based ECM organic fouling. Using a decoupled anode–cathode filtration system ensured unbiased results from the anode while studying distinct conditions near the cathodic ECM surface. The results demonstrated a 50 % reduction in transmembrane pressure (TMP) onset applying potential due to electroosmosis, emphasizing its importance in fouling studies. Fouling experiments using alginate in synthetic wastewater solution showed substantial organic fouling at open circuit potential, −1 and −1.5 V, as the TMP increased by about 2.5 times than the initial value. Fouling decreased significantly at −2.5 V (vs. Ag/AgCl), as indicated by the stable TMP. Analysis of ROS effects and fouling experiments at pH 7–––12 found no influence on organic fouling. Simplified force balance analysis and filtration tests suggested electrostatic repulsion as the antifouling mechanism. At potentials below −2.5 V, electrostatic repulsion maximizes closer to the ECM surface, causing fouling from short-range attractive forces. Electrochemical quartz crystal microbalance analysis at 0.1 V (vs. Ag/AgCl) proposed that a smooth ECM surface can reduce organic fouling at lower potentials.
AB - Anaerobic electroconductive membrane (ECM) bioreactors are promising wastewater treatment technology, yet their organic antifouling mechanism remains unclear. This research investigated the impact of reactive oxygen species (ROS) oxidation, pH alteration, and electrostatic repulsion on carbon nanotube-based ECM organic fouling. Using a decoupled anode–cathode filtration system ensured unbiased results from the anode while studying distinct conditions near the cathodic ECM surface. The results demonstrated a 50 % reduction in transmembrane pressure (TMP) onset applying potential due to electroosmosis, emphasizing its importance in fouling studies. Fouling experiments using alginate in synthetic wastewater solution showed substantial organic fouling at open circuit potential, −1 and −1.5 V, as the TMP increased by about 2.5 times than the initial value. Fouling decreased significantly at −2.5 V (vs. Ag/AgCl), as indicated by the stable TMP. Analysis of ROS effects and fouling experiments at pH 7–––12 found no influence on organic fouling. Simplified force balance analysis and filtration tests suggested electrostatic repulsion as the antifouling mechanism. At potentials below −2.5 V, electrostatic repulsion maximizes closer to the ECM surface, causing fouling from short-range attractive forces. Electrochemical quartz crystal microbalance analysis at 0.1 V (vs. Ag/AgCl) proposed that a smooth ECM surface can reduce organic fouling at lower potentials.
UR - http://www.scopus.com/inward/record.url?scp=85183977699&partnerID=8YFLogxK
U2 - 10.1016/j.apsusc.2024.159473
DO - 10.1016/j.apsusc.2024.159473
M3 - Article
AN - SCOPUS:85183977699
SN - 0169-4332
VL - 654
JO - Applied Surface Science
JF - Applied Surface Science
M1 - 159473
ER -