Abstract
The 28-mer phosphorothioate oligodeoxycytidine (S-(dC)28) has been reported previously to be a strong inhibitor of herpes simplex virus type 2 (HSV-2) DNA polymerase and HSV-2 growth in cell culture. In this study, the mechanism of action of S-(dC)28 was studied. S-(dC)28 was found to interfere with the adsorption of HSV-1 and HSV-2 to HeLa cells. HSV-2 infection, but not HSV-1, was found to potentiate the uptake of S-(dC)28 into HeLa cells. The enhanced uptake reached a plateau at 6-9 h postinfection and appeared to be dose-dependent and saturable at concentrations higher than 1μM. The amount of S-(dC)28 accumulated in HSV-2 infected cells was found to be 50 pmol/106 cells at 6 h postinfection, whereas no significant drug accumulation was found in uninfected cells. S-(dC)28 binding studies suggested that there are several types of tight binding sites associated with HSV-2 virions, which could play a role in the enhancement of S-(dC)28 uptake. Subcellular distribution studies showed that intracellular S-(dC)28 was associated with both nuclei and cytoplasm and remained intact. Mechanism studies suggested three different mechanisms which could be responsible for the anti-HSV-2 action of S-(dC)28; (i) S-(dC)28 could interfere with the uptake of HSV. (ii) HSV-2 infection enhances the uptake of S-(dC)28 into cells (iii) S-(dC)28 inhibits HSV-2 DNA synthesis, possibly, by inhibiting the viral DNA polymerase. The unique mechanisms of anti-HSV action of S-(dC)28 suggest it could be a potential new agent in anti-HSV-2 chemotherapy.
Original language | English |
---|---|
Pages (from-to) | 20172-20178 |
Number of pages | 7 |
Journal | Journal of Biological Chemistry |
Volume | 265 |
Issue number | 33 |
State | Published - 25 Nov 1990 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology