Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments

H. Shmueli, G. Ziskind, R. Letan

Research output: Contribution to journalArticlepeer-review

353 Scopus citations

Abstract

The present work numerically investigates melting of a phase-change material (PCM) in a vertical cylindrical tube. The analysis aims at an investigation of local flow and thermal phenomena, by means of a numerical simulation which is compared to the previous experimental results .The numerical analysis is realized using an enthalpy-porosity formulation. The effect of various parameters of the numerical solution on the results is examined: in particular, the term describing the mushy zone in the momentum equation and the influence of the pressure-velocity coupling and pressure discretization schemes. PISO vs. SIMPLE and PRESTO! vs. Body-Force-Weighted schemes are examined. No difference is detected between the first two. However, considerable differences appear with regard to the last two, due to the mushy zone role.Image processing of experimental results from the previous studies is performed, yielding quantitative information about the local melt fractions and heat transfer rates. Based on the good agreement between simulations and experiments, the work compares the heat transfer rates from the experiments with those from the numerical analysis, providing a deeper understanding of the heat transfer mechanisms. The results show quantitatively that at the beginning of the process, the heat transfer is by conduction from the tube wall to the solid phase through a relatively thin liquid layer. As the melting progresses, natural convection in the liquid becomes dominant, changing the solid shape to a conical one, which shrinks in size from the top to the bottom.

Original languageEnglish
Pages (from-to)4082-4091
Number of pages10
JournalInternational Journal of Heat and Mass Transfer
Volume53
Issue number19-20
DOIs
StatePublished - 1 Sep 2010

Keywords

  • Conduction
  • Convection
  • Local heat transfer
  • Melt fraction
  • Melting
  • Vertical tube

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments'. Together they form a unique fingerprint.

Cite this