TY - JOUR
T1 - Metagenomic insights into the metabolism of microbial communities that mediate iron and methane cycling in Lake Kinneret iron-rich methanic sediments
AU - Elul, Michal
AU - Rubin-Blum, Maxim
AU - Ronen, Zeev
AU - Bar-Or, Itay
AU - Eckert, Werner
AU - Sivan, Orit
N1 - Publisher Copyright:
© 2021 Copernicus GmbH. All rights reserved.
PY - 2021/3/23
Y1 - 2021/3/23
N2 - Complex microbial communities facilitate iron and methane transformations in anoxic methanic sediments of freshwater lakes, such as Lake Kinneret (the Sea of Galilee, Israel). The phylogenetic and functional diversity of these consortia are not fully understood, and it is not clear which lineages perform iron reduction and anaerobic oxidation of methane (AOM). Here, we investigated microbial communities from both natural Lake Kinneret iron-rich methanic sediments (20 cm depth) and ironamended slurry incubations from this zone using metagenomics, focusing on functions associated with iron reduction and methane cycling. Analyses of the phylogenetic and functional diversity indicate that consortia of archaea (mainly Bathyarchaeia, Methanomicrobia, Thermoplasmata, and Thermococci) and bacteria (mainly Chloroflexi (Chloroflexota), Nitrospirae (Nitrospirota), and Proteobacteria) perform key metabolic reactions such as amino acid uptake and dissimilation, organic matter fermentation, and methanogenesis. The Deltaproteobacteria, especially Desulfuromondales (Desulfuromonadota), have the potential to transfer electrons extracellularly either to iron mineral particles or to microbial syntrophs, including methanogens. This is likely via transmembrane cytochromes, outer-membrane hexaheme c-Type cytochrome (OmcS) in particular, or pilin monomers (PilA), all of which were attributed to this lineage. Bona fide anaerobic oxidizers of methane (ANME) and denitrifying methanotrophs Methylomirabilia (NC10) may mediate AOM in these methanogenic sediments; however we also consider the role of methanogens in active AOM or back flux of methanogenesis. Putative aerobes, such as methaneoxidizing bacteria Methylomonas and their methylotrophic syntrophs Methylotenera, are found among the anaerobic lineages in Lake Kinneret iron-Amended slurries and are also involved in the oxidation of methane or its intermediates, as suggested previously. We propose a reaction model for the metabolic interactions in these sediments, linking the potential players that interact via intricate metabolic tradeoffs and direct electron transfer between species. Our results highlight the metabolic complexity of microbial communities in an energy-limited environment, where aerobe and anaerobe communities may co-exist and facilitate AOM as one strategy for survival.
AB - Complex microbial communities facilitate iron and methane transformations in anoxic methanic sediments of freshwater lakes, such as Lake Kinneret (the Sea of Galilee, Israel). The phylogenetic and functional diversity of these consortia are not fully understood, and it is not clear which lineages perform iron reduction and anaerobic oxidation of methane (AOM). Here, we investigated microbial communities from both natural Lake Kinneret iron-rich methanic sediments (20 cm depth) and ironamended slurry incubations from this zone using metagenomics, focusing on functions associated with iron reduction and methane cycling. Analyses of the phylogenetic and functional diversity indicate that consortia of archaea (mainly Bathyarchaeia, Methanomicrobia, Thermoplasmata, and Thermococci) and bacteria (mainly Chloroflexi (Chloroflexota), Nitrospirae (Nitrospirota), and Proteobacteria) perform key metabolic reactions such as amino acid uptake and dissimilation, organic matter fermentation, and methanogenesis. The Deltaproteobacteria, especially Desulfuromondales (Desulfuromonadota), have the potential to transfer electrons extracellularly either to iron mineral particles or to microbial syntrophs, including methanogens. This is likely via transmembrane cytochromes, outer-membrane hexaheme c-Type cytochrome (OmcS) in particular, or pilin monomers (PilA), all of which were attributed to this lineage. Bona fide anaerobic oxidizers of methane (ANME) and denitrifying methanotrophs Methylomirabilia (NC10) may mediate AOM in these methanogenic sediments; however we also consider the role of methanogens in active AOM or back flux of methanogenesis. Putative aerobes, such as methaneoxidizing bacteria Methylomonas and their methylotrophic syntrophs Methylotenera, are found among the anaerobic lineages in Lake Kinneret iron-Amended slurries and are also involved in the oxidation of methane or its intermediates, as suggested previously. We propose a reaction model for the metabolic interactions in these sediments, linking the potential players that interact via intricate metabolic tradeoffs and direct electron transfer between species. Our results highlight the metabolic complexity of microbial communities in an energy-limited environment, where aerobe and anaerobe communities may co-exist and facilitate AOM as one strategy for survival.
UR - http://www.scopus.com/inward/record.url?scp=85103014940&partnerID=8YFLogxK
U2 - 10.5194/bg-18-2091-2021
DO - 10.5194/bg-18-2091-2021
M3 - Article
AN - SCOPUS:85103014940
SN - 1726-4170
VL - 18
SP - 2091
EP - 2106
JO - Biogeosciences
JF - Biogeosciences
IS - 6
ER -