Abstract
The magnetic properties of compacted 20 nm La1-x MnO3 particles, prepared by the citrate method, in pristine and metastable states have been investigated. It was found that in its pristine state the investigated sample displays a paramagnetic-to-ferromagnetic transition near TC 220 K, below which the relative volume of the ferromagnetic (FM) phase at 5 K approaches a value of about 24%. Magnetization and ac-susceptibility measurements exhibit a cluster-glass-like behavior characterized by a noticeable difference between zero-field-cooled and field-cooled magnetization and frequency-dependent ac susceptibility. Different metastable states with highly reduced FM phase and "negative ferromagnetism" developed after a series of quick coolings of the sample placed in a container filled with silicon oil. The recorded temperature dependence of the negative FM moment appears to be a normalized replica of the corresponding FM dependence. Hysteresis loops of magnetization at low temperatures in both pristine and diamagnetic (DIA) states exhibit the same value of coercive field at 5 K, HC 400 Oe. The abnormal DIA state can only be erased after a few hours storage of the sample at room temperature. These observations are discussed with reference to a model in which the negative ferromagnetism is attributed to the appearance of nondispersive orbital currents which result in a coupling between the core of the FM particles and the surrounding diamagnetic matrix formed during the quick cooling cycles.
Original language | English |
---|---|
Article number | 014423 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 77 |
Issue number | 1 |
DOIs | |
State | Published - 16 Jan 2008 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics