Methionine sulfoxide reductases and methionine sulfoxide in the subterranean mole rat (Spalax): Characterization of expression under various oxygen conditions

Jackob Moskovitz, Assaf Malik, Alvaro Hernandez, Mark Band, Aaron Avivi

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The blind subterranean mole rat (Spalax ehrenbergi) exhibits a relatively long life span, which is attributed to an efficient antioxidant defense affording protection against accumulation of oxidative modifications of proteins. Methionine residues can be oxidized to methionine sulfoxide (MetO) and then enzymatically reduced by the methionine sulfoxide reductase (Msr) system. In the current study we have isolated the cDNA sequences of the Spalax Msr genes as well as 23 additional selenoproteins and monitored the activities of Msr enzymes in liver and brain of rat (Rattus norvegicus), Spalax galili, and Spalax judaei under normoxia, hypoxia, and hyperoxia. Under normoxia, the Msr activity was lower in S. galili in comparison to S. judaei and R. norvegicus especially in the brain. The pattern of Msr activity of the three species was similar throughout the tested conditions. However, exposure of the animals to hypoxia caused a significant enhancement of Msr activity, especially in S. galili. Hyperoxic exposure showed a highly significant induction of Msr activity compared with normoxic conditions for R. norvegicus and S. galili brain. It was concluded that among all species examined, S. galili appears to be more responsive to oxygen tension changes and that the Msr system is upregulated mainly by severe hypoxia.

Original languageEnglish
Pages (from-to)406-414
Number of pages9
JournalComparative Biochemistry and Physiology - A Molecular and Integrative Physiology
Volume161
Issue number4
DOIs
StatePublished - 1 Jan 2012
Externally publishedYes

Keywords

  • Antioxidants
  • Hyperoxia
  • Hypoxia
  • Methionine oxidation
  • Oxidative stress

ASJC Scopus subject areas

  • Biochemistry
  • Physiology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Methionine sulfoxide reductases and methionine sulfoxide in the subterranean mole rat (Spalax): Characterization of expression under various oxygen conditions'. Together they form a unique fingerprint.

Cite this