Abstract
We present what is, to our knowledge, a new methodology for high-resolution three-dimensional imaging of oxygen concentration near live cells. The cells are placed in the buffer solution of a stable paramagnetic probe, and electron spin-resonance microimaging is employed to map out the probe's spin-spin relaxation time (T2). This information is directly linked to the concentration of the oxygen molecule. The method is demonstrated with a test sample and with a small amount of live photosynthetic cells (cyanobacteria), under conditions of darkness and light. Spatial resolution of ∼30 × 30 × 100 μm is demonstrated, with ∼μM oxygen concentration sensitivity and sub-fmol absolute oxygen sensitivity per voxel. The use of electron spin-resonance microimaging for oxygen mapping near cells complements the currently available techniques based on microelectrodes or fluorescence/phosphorescence. Furthermore, with the proper paramagnetic probe, it will also be readily applicable for intracellular oxygen microimaging, a capability which other methods find very difficult to achieve.
Original language | English |
---|---|
Pages (from-to) | 971-978 |
Number of pages | 8 |
Journal | Biophysical Journal |
Volume | 99 |
Issue number | 3 |
DOIs | |
State | Published - 4 Aug 2010 |
Externally published | Yes |
ASJC Scopus subject areas
- Biophysics