TY - JOUR
T1 - Mini-review
T2 - The Role of the Cerebellum in Visuomotor Adaptation
AU - Tzvi, Elinor
AU - Loens, Sebastian
AU - Donchin, Opher
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2022/4/1
Y1 - 2022/4/1
N2 - The incredible capability of the brain to quickly alter performance in response to ever-changing environment is rooted in the process of adaptation. The core aspect of adaptation is to fit an existing motor program to altered conditions. Adaptation to a visuomotor rotation or an external force has been well established as tools to study the mechanisms underlying sensorimotor adaptation. In this mini-review, we summarize recent findings from the field of visuomotor adaptation. We focus on the idea that the cerebellum plays a central role in the process of visuomotor adaptation and that interactions with cortical structures, in particular, the premotor cortex and the parietal cortex, may be crucial for this process. To this end, we cover a range of methodologies used in the literature that link cerebellar functions and visuomotor adaptation; behavioral studies in cerebellar lesion patients, neuroimaging and non-invasive stimulation approaches. The mini-review is organized as follows: first, we provide evidence that sensory prediction errors (SPE) in visuomotor adaptation rely on the cerebellum based on behavioral studies in cerebellar patients. Second, we summarize structural and functional imaging studies that provide insight into spatial localization as well as visuomotor adaptation dynamics in the cerebellum. Third, we discuss premotor — cerebellar interactions and how these may underlie visuomotor adaptation. And finally, we provide evidence from transcranial direct current and magnetic stimulation studies that link cerebellar activity, beyond correlational relationships, to visuomotor adaptation.
AB - The incredible capability of the brain to quickly alter performance in response to ever-changing environment is rooted in the process of adaptation. The core aspect of adaptation is to fit an existing motor program to altered conditions. Adaptation to a visuomotor rotation or an external force has been well established as tools to study the mechanisms underlying sensorimotor adaptation. In this mini-review, we summarize recent findings from the field of visuomotor adaptation. We focus on the idea that the cerebellum plays a central role in the process of visuomotor adaptation and that interactions with cortical structures, in particular, the premotor cortex and the parietal cortex, may be crucial for this process. To this end, we cover a range of methodologies used in the literature that link cerebellar functions and visuomotor adaptation; behavioral studies in cerebellar lesion patients, neuroimaging and non-invasive stimulation approaches. The mini-review is organized as follows: first, we provide evidence that sensory prediction errors (SPE) in visuomotor adaptation rely on the cerebellum based on behavioral studies in cerebellar patients. Second, we summarize structural and functional imaging studies that provide insight into spatial localization as well as visuomotor adaptation dynamics in the cerebellum. Third, we discuss premotor — cerebellar interactions and how these may underlie visuomotor adaptation. And finally, we provide evidence from transcranial direct current and magnetic stimulation studies that link cerebellar activity, beyond correlational relationships, to visuomotor adaptation.
UR - http://www.scopus.com/inward/record.url?scp=85107430635&partnerID=8YFLogxK
U2 - 10.1007/s12311-021-01281-4
DO - 10.1007/s12311-021-01281-4
M3 - Review article
C2 - 34080132
AN - SCOPUS:85107430635
SN - 1473-4222
VL - 21
SP - 306
EP - 313
JO - Cerebellum
JF - Cerebellum
IS - 2
ER -