Minute-Scale High-Temperature Synthesis of Polymeric Carbon Nitride Photoanodes

Ayelet Tashakory, Sanjit Mondal, Venugopala Rao Battula, Gabriel Mark, Tirza Shmila, Michael Volokh, Menny Shalom

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Polymeric carbon nitride (CN) has emerged as a promising photoanodic material in water-splitting photoelectrochemical cells (PEC). However, the current deposition methods of CN layers on substrates usually include a long heating process at 500−550 °C, which might cause sublimation or decomposition of the CN monomers and destruction of the substrate, leading to a nonuniform CN film. Herein, a simple, fast, and scalable energy-economic procedure to synthesize homogenous CN films is introduced. The predesigned CN monomers film is subjected for several minutes to higher temperatures than the standard calcination procedure. The short heating process allows the formation of a uniform CN layer, with excellent contact with the substrate and good activity as a photoanode in PEC. The optimal CN photoanode reaches photocurrent densities of ≈200 μA cm−2 at 1.23 versus reversible hydrogen electrode in neutral and acidic solutions and 120 μA cm−2 in a basic solution.

Original languageEnglish
Article number2400123
JournalSmall Structures
Volume5
Issue number10
DOIs
StatePublished - 1 Oct 2024

Keywords

  • carbon nitride
  • fast heating
  • photoelectrochemical cells
  • water splitting

ASJC Scopus subject areas

  • General Materials Science
  • Engineering (miscellaneous)
  • Chemistry (miscellaneous)
  • Energy (miscellaneous)
  • Environmental Science (miscellaneous)

Fingerprint

Dive into the research topics of 'Minute-Scale High-Temperature Synthesis of Polymeric Carbon Nitride Photoanodes'. Together they form a unique fingerprint.

Cite this