Mixed-species bacterial swarms show an interplay of mixing and segregation across scales

Gal Natan, Vasco M. Worlitzer, Gil Ariel, Avraham Be’er

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Bacterial swarms are a highly-researched example of natural active matter. In particular, the interplay between biological interactions and the physics underlying the swarming dynamics is of both biological and physical interest. In this paper, we study mixed swarms of Bacillus subtilis and Pseudomonas aeruginosa. We find intricate interactions between the species, showing both cooperation and segregation across different spatial and temporal scales. On one hand, even though axenic colonies grow on disparate time scale, an order of magnitude apart, the two-species swarm together, forming a single, combined colony. However, the rapidly moving populations are locally segregated, with different characteristic speeds and lengths (or cluster sizes) that depend on the ratio between the species. Comparison with controlled mutant strains suggest that both the physical and known biological differences in species characteristics may not be enough to explain the segregation between the species in the mixed swarm. We hypothesize that the heterogeneous spatial distribution is due to some mechanism that enables bacteria to recognize their own kind, whose precise origin we could not identify.

Original languageEnglish
Article number16500
JournalScientific Reports
Volume12
Issue number1
DOIs
StatePublished - 1 Dec 2022

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Mixed-species bacterial swarms show an interplay of mixing and segregation across scales'. Together they form a unique fingerprint.

Cite this