Modelling Europe-wide fine resolution daily ambient temperature for 2003–2020 using machine learning

Alonso Bussalleu, Gerard Hoek, Itai Kloog, Nicole Probst-Hensch, Martin Röösli, Kees de Hoogh

Research output: Contribution to journalArticlepeer-review


To improve our understanding of the health impacts of high and low temperatures, epidemiological studies require spatiotemporally resolved ambient temperature (Ta) surfaces. Exposure assessment over various European cities for multi-cohort studies requires high resolution and harmonized exposures over larger spatiotemporal extents. Our aim was to develop daily mean, minimum and maximum ambient temperature surfaces with a 1 × 1 km resolution for Europe for the 2003–2020 period. We used a two-stage random forest modelling approach. Random forest was used to (1) impute missing satellite derived Land Surface Temperature (LST) using vegetation and weather variables and to (2) use the gap-filled LST together with land use and meteorological variables to model spatial and temporal variation in Ta measured at weather stations. To assess performance, we validated these models using random and block validation. In addition to global performance, and to assess model stability, we reported model performance at a higher granularity (local). Globally, our models explained on average more than 81 % and 93 % of the variability in the block validation sets for LST and Ta respectively. Average RMSE was 1.3, 1.9 and 1.7 °C for mean, min and max ambient temperature respectively, indicating a generally good performance. For Ta models, local performance was stable across most of the spatiotemporal extent, but showed lower performance in areas with low observation density. Overall, model stability and performance were lower when using block validation compared to random validation. The presented models will facilitate harmonized high-resolution exposure assignment for multi-cohort studies at a European scale.

Original languageEnglish
Article number172454
JournalScience of the Total Environment
StatePublished - 10 Jun 2024


  • Ambient temperature
  • Block cross validation
  • Random forest
  • Remote sensing

ASJC Scopus subject areas

  • Pollution
  • Waste Management and Disposal
  • Environmental Engineering
  • Environmental Chemistry


Dive into the research topics of 'Modelling Europe-wide fine resolution daily ambient temperature for 2003–2020 using machine learning'. Together they form a unique fingerprint.

Cite this