TY - JOUR
T1 - Moderation of the Electronic Structure of Phosphamides to Execute the Catalytic Appel Reaction Bypassing Phosphine
AU - Kumari, Nidhi
AU - Jagadeesh, Anjana
AU - Galav, Prashant
AU - Kundu, Avinava
AU - Chakraborty, Biswarup
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2024/11/1
Y1 - 2024/11/1
N2 - A set of structurally analogous, albeit electronically distinct, phosphamides (1aa-10aa) is prepared, and the effect of the electronic amendment due to p-substitution has been tested for the conversion of alcohols to halides via the Appel reaction. The −OMe-substituted diphosphamide (8aa) remains the most active, providing ∼96% conversion of alcohols to halides with a TON of 11 in moderate reaction conditions with a large substrate scope. Halide formation follows a pseudo-first-order rate with a constant rate (kobs) of 7.13 × 10-5 s-1. Temp-dependent kinetics and Eyring analyses reveal the activation parameters ΔH‡ of 28.95 (±1.6) kcal mol-1, ΔS‡ of −70.02 (±0.4) cal K-1 mol-1, and ΔG‡298 of 49.81 (±1.2) kcal mol-1. The deuterium labeling study highlights the O-H dissociation of the alcohol as the rate-determining step, while the Hammett analysis with p-substituted benzyl alcohols indicates a positive charge accumulation at the phosphorus center during the Appel reaction. The HOMO-LUMO energy and NPA analyses show that p-OMe substitutions in 8aa make the “P═O” bond more ionic and corresponding aminophosphine is nucleophilic, which are favorable for the Appel reaction. In situ detection of the Appel salt, [R3PX]CX3 and alkoxy phosphonium cation [R3POR]X, validates the reaction pathway mediated by the phosphamides.
AB - A set of structurally analogous, albeit electronically distinct, phosphamides (1aa-10aa) is prepared, and the effect of the electronic amendment due to p-substitution has been tested for the conversion of alcohols to halides via the Appel reaction. The −OMe-substituted diphosphamide (8aa) remains the most active, providing ∼96% conversion of alcohols to halides with a TON of 11 in moderate reaction conditions with a large substrate scope. Halide formation follows a pseudo-first-order rate with a constant rate (kobs) of 7.13 × 10-5 s-1. Temp-dependent kinetics and Eyring analyses reveal the activation parameters ΔH‡ of 28.95 (±1.6) kcal mol-1, ΔS‡ of −70.02 (±0.4) cal K-1 mol-1, and ΔG‡298 of 49.81 (±1.2) kcal mol-1. The deuterium labeling study highlights the O-H dissociation of the alcohol as the rate-determining step, while the Hammett analysis with p-substituted benzyl alcohols indicates a positive charge accumulation at the phosphorus center during the Appel reaction. The HOMO-LUMO energy and NPA analyses show that p-OMe substitutions in 8aa make the “P═O” bond more ionic and corresponding aminophosphine is nucleophilic, which are favorable for the Appel reaction. In situ detection of the Appel salt, [R3PX]CX3 and alkoxy phosphonium cation [R3POR]X, validates the reaction pathway mediated by the phosphamides.
UR - http://www.scopus.com/inward/record.url?scp=85207149588&partnerID=8YFLogxK
U2 - 10.1021/acs.joc.4c02006
DO - 10.1021/acs.joc.4c02006
M3 - Article
C2 - 39425659
AN - SCOPUS:85207149588
SN - 0022-3263
VL - 89
SP - 15851
EP - 15863
JO - Journal of Organic Chemistry
JF - Journal of Organic Chemistry
IS - 21
ER -