Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin

Yavuz Bayram, Ender Karaca, Zeynep Coban Akdemir, Elif Ozdamar Yilmaz, Gulsen Akay Tayfun, Hatip Aydin, Deniz Torun, Sevcan Tug Bozdogan, Alper Gezdirici, Sedat Isikay, Mehmed M. Atik, Tomasz Gambin, Tamar Harel, Ayman W. El-Hattab, Wu Lin Charng, Davut Pehlivan, Shalini N. Jhangiani, Donna M. Muzny, Ali Karaman, Tamer CelikOzge Ozalp Yuregir, Timur Yildirim, Ilhan A. Bayhan, Eric Boerwinkle, Richard A. Gibbs, Nursel Elcioglu, Beyhan Tuysuz, James R. Lupski

Research output: Contribution to journalArticlepeer-review

89 Scopus citations

Abstract

BACKGROUND. Arthrogryposis, defined as congenital joint contractures in 2 or more body areas, is a clinical sign rather than a specific disease diagnosis. To date, more than 400 different disorders have been described that present with arthrogryposis, and variants of more than 220 genes have been associated with these disorders; however, the underlying molecular etiology remains unknown in the considerable majority of these cases. METHODS. We performed whole exome sequencing (WES) of 52 patients with clinical presentation of arthrogryposis from 48 different families. RESULTS. Affected individuals from 17 families (35.4%) had variants in known arthrogryposis-associated genes, including homozygous variants of cholinergic γ nicotinic receptor (CHRNG, 6 subjects) and endothelin converting enzyme-like 1 (ECEL1, 4 subjects). Deleterious variants in candidate arthrogryposis-causing genes (fibrillin 3 [FBN3], myosin IXA [MYO9A], and pleckstrin and Sec7 domain containing 3 [PSD3]) were identified in 3 families (6.2%). Moreover, in 8 families with a homozygous mutation in an arthrogryposis-associated gene, we identified a second locus with either a homozygous or compound heterozygous variant in a candidate gene (myosin binding protein C, fast type [MYBPC2] and vacuolar protein sorting 8 [VPS8], 2 families, 4.2%) or in another disease-associated genes (6 families, 12.5%), indicating a potential mutational burden contributing to disease expression. CONCLUSION. In 58.3% of families, the arthrogryposis manifestation could be explained by a molecular diagnosis; however, the molecular etiology in subjects from 20 families remained unsolved by WES. Only 5 of these 20 unrelated subjects had a clinical presentation consistent with amyoplasia; a phenotype not thought to be of genetic origin. Our results indicate that increased use of genome-wide technologies will provide opportunities to better understand genetic models for diseases and molecular mechanisms of genetically heterogeneous disorders, such as arthrogryposis.

Original languageEnglish
Pages (from-to)762-778
Number of pages17
JournalJournal of Clinical Investigation
Volume126
Issue number2
DOIs
StatePublished - 1 Feb 2016
Externally publishedYes

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin'. Together they form a unique fingerprint.

Cite this