Abstract
The deceleration of a rigid projectile penetrating a metallic target is explored through numerical simulations with very different targets, in order to highlight the role of the target's inertia during penetration. These simulations also highlight the cavitation phenomenon through which, above a certain threshold velocity, the target's inertia is playing an important role in the penetration process. In addition, we propose a simplified model for the entrance phase effect on the penetration depths of rigid projectiles impacting metallic targets. We also explore the role of Poisson's ratio in determining the resistance to penetration of a metallic target, and derive a new relation for the resisting stresses exerted by these targets on ogive-nosed rigid projectiles.
Original language | English |
---|---|
Article number | 103713 |
Journal | International Journal of Impact Engineering |
Volume | 146 |
DOIs | |
State | Published - 1 Dec 2020 |
Externally published | Yes |
Keywords
- Entrance phase
- Resisting stress
- Rigid projectiles
- Terminal ballistics
ASJC Scopus subject areas
- Civil and Structural Engineering
- Automotive Engineering
- Aerospace Engineering
- Safety, Risk, Reliability and Quality
- Ocean Engineering
- Mechanics of Materials
- Mechanical Engineering