TY - JOUR
T1 - Most discriminating segment - Longest common subsequence (MDSLCS) algorithm for dynamic hand gesture classification
AU - Stern, Helman
AU - Shmueli, Merav
AU - Berman, Sigal
N1 - Funding Information:
This work was supported in part by Deutsche Telekom AG . The authors would like to thank Tom Godo and Darya Frolova for their assistance during the development process.
PY - 2013/1/1
Y1 - 2013/1/1
N2 - In this work, we consider the recognition of dynamic gestures based on representative sub-segments of a gesture, which are denoted as most discriminating segments (MDSs). The automatic extraction and recognition of such small representative segments, rather than extracting and recognizing the full gestures themselves, allows for a more discriminative classifier. A MDS is a sub-segment of a gesture that is most dissimilar to all other gesture sub-segments. Gestures are classified using a MDSLCS algorithm, which recognizes the MDSs using a modified longest common subsequence (LCS) measure. The extraction of MDSs from a data stream uses adaptive window parameters, which are driven by the successive results of multiple calls to the LCS classifier. In a preprocessing stage, gestures that have large motion variations are replaced by several forms of lesser variation. We learn these forms by adaptive clustering of a training set of gestures, where we reemploy the LCS to determine similarity between gesture trajectories. The MDSLCS classifier achieved a gesture recognition rate of 92.6% when tested using a set of pre-cut free hand digit (0-9) gestures, while hidden Markov models (HMMs) achieved an accuracy of 89.5%. When the MDSLCS was tested against a set of streamed digit gestures, an accuracy of 89.6% was obtained. At present the HMMs method is considered the state-of-the-art method for classifying motion trajectories. The MDSLCS algorithm had a higher accuracy rate for pre-cut gestures, and is also more suitable for streamed gestures. MDSLCS provides a significant advantage over HMMs by not requiring data re-sampling during run-time and performing well with small training sets.
AB - In this work, we consider the recognition of dynamic gestures based on representative sub-segments of a gesture, which are denoted as most discriminating segments (MDSs). The automatic extraction and recognition of such small representative segments, rather than extracting and recognizing the full gestures themselves, allows for a more discriminative classifier. A MDS is a sub-segment of a gesture that is most dissimilar to all other gesture sub-segments. Gestures are classified using a MDSLCS algorithm, which recognizes the MDSs using a modified longest common subsequence (LCS) measure. The extraction of MDSs from a data stream uses adaptive window parameters, which are driven by the successive results of multiple calls to the LCS classifier. In a preprocessing stage, gestures that have large motion variations are replaced by several forms of lesser variation. We learn these forms by adaptive clustering of a training set of gestures, where we reemploy the LCS to determine similarity between gesture trajectories. The MDSLCS classifier achieved a gesture recognition rate of 92.6% when tested using a set of pre-cut free hand digit (0-9) gestures, while hidden Markov models (HMMs) achieved an accuracy of 89.5%. When the MDSLCS was tested against a set of streamed digit gestures, an accuracy of 89.6% was obtained. At present the HMMs method is considered the state-of-the-art method for classifying motion trajectories. The MDSLCS algorithm had a higher accuracy rate for pre-cut gestures, and is also more suitable for streamed gestures. MDSLCS provides a significant advantage over HMMs by not requiring data re-sampling during run-time and performing well with small training sets.
KW - Classification
KW - Digits
KW - Gesture recognition
KW - Longest common subsequence
UR - http://www.scopus.com/inward/record.url?scp=84885077333&partnerID=8YFLogxK
U2 - 10.1016/j.patrec.2013.02.007
DO - 10.1016/j.patrec.2013.02.007
M3 - Article
AN - SCOPUS:84885077333
SN - 0167-8655
VL - 34
SP - 1980
EP - 1989
JO - Pattern Recognition Letters
JF - Pattern Recognition Letters
IS - 15
ER -