TY - GEN
T1 - Multi-agent pathfínding as a combinatorial auction
AU - Amir, Ofra
AU - Sharon, Guni
AU - Stern, Roni
N1 - Publisher Copyright:
© Copyright 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - This paper proposes a mapping between multi-agent pathfinding (MAPF) and combinatorial auctions (CAs). In MAPF, agents need to reach their goal destinations without colliding. Algorithms for solving MAPF aim at assigning agents non-conflicting paths that minimize agents' travel costs. In CA problems, agents bid over bundles of items they desire. Auction mechanisms aim at finding an allocation of bundles that maximizes social welfare. In the proposed mapping of MAPF to CAs, agents bid on paths to their goals and the auction allocates non-colliding paths to the agents. Using this formulation, auction mechanisms can be naturally used to solve a range of MAPF problem variants. In particular, auction mechanisms can be applied to non-cooperative settings with self-interested agents while providing optimality guarantees and robustness to manipulations by agents. The paper further shows how to efficiently implement an auction mechanism for MAPF, utilizing methods and representations from both the MAPF and CA literatures.
AB - This paper proposes a mapping between multi-agent pathfinding (MAPF) and combinatorial auctions (CAs). In MAPF, agents need to reach their goal destinations without colliding. Algorithms for solving MAPF aim at assigning agents non-conflicting paths that minimize agents' travel costs. In CA problems, agents bid over bundles of items they desire. Auction mechanisms aim at finding an allocation of bundles that maximizes social welfare. In the proposed mapping of MAPF to CAs, agents bid on paths to their goals and the auction allocates non-colliding paths to the agents. Using this formulation, auction mechanisms can be naturally used to solve a range of MAPF problem variants. In particular, auction mechanisms can be applied to non-cooperative settings with self-interested agents while providing optimality guarantees and robustness to manipulations by agents. The paper further shows how to efficiently implement an auction mechanism for MAPF, utilizing methods and representations from both the MAPF and CA literatures.
UR - http://www.scopus.com/inward/record.url?scp=84959912021&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84959912021
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 2003
EP - 2009
BT - Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PB - AI Access Foundation
T2 - 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
Y2 - 25 January 2015 through 30 January 2015
ER -