TY - JOUR
T1 - MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks.
AU - Hoernle, Nick
AU - Karampatsis, Rafael-Michael
AU - Belle, Vaishak
AU - Gal, Kobi
N1 - DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2022/6/28
Y1 - 2022/6/28
N2 - We propose a novel way to incorporate expert knowledge into the training of deep neural networks. Many approaches encode domain constraints directly into the network architecture, requiring non-trivial or domain-specific engineering. In contrast, our approach, called MultiplexNet, represents domain knowledge as a quantifier-free logical formula in disjunctive normal form (DNF) which is easy to encode and to elicit from human experts. It introduces a latent Categorical variable that learns to choose which constraint term optimizes the error function of the network and it compiles the constraints directly into the output of existing learning algorithms. We demonstrate the efficacy of this approach empirically on several classical deep learning tasks, such as density estimation and classification in both supervised and unsupervised settings where prior knowledge about the domains was expressed as logical constraints. Our results show that the MultiplexNet approach learned to approximate unknown distributions well, often requiring fewer data samples than the alternative approaches. In some cases, MultiplexNet finds better solutions than the baselines; or solutions that could not be achieved with the alternative approaches. Our contribution is in encoding domain knowledge in a way that facilitates inference. We specifically focus on quantifier-free logical formulae that are specified over the output domain of a network. We show that this approach is both efficient and general; and critically, our approach guarantees 100% constraint satisfaction in a network's output.
AB - We propose a novel way to incorporate expert knowledge into the training of deep neural networks. Many approaches encode domain constraints directly into the network architecture, requiring non-trivial or domain-specific engineering. In contrast, our approach, called MultiplexNet, represents domain knowledge as a quantifier-free logical formula in disjunctive normal form (DNF) which is easy to encode and to elicit from human experts. It introduces a latent Categorical variable that learns to choose which constraint term optimizes the error function of the network and it compiles the constraints directly into the output of existing learning algorithms. We demonstrate the efficacy of this approach empirically on several classical deep learning tasks, such as density estimation and classification in both supervised and unsupervised settings where prior knowledge about the domains was expressed as logical constraints. Our results show that the MultiplexNet approach learned to approximate unknown distributions well, often requiring fewer data samples than the alternative approaches. In some cases, MultiplexNet finds better solutions than the baselines; or solutions that could not be achieved with the alternative approaches. Our contribution is in encoding domain knowledge in a way that facilitates inference. We specifically focus on quantifier-free logical formulae that are specified over the output domain of a network. We show that this approach is both efficient and general; and critically, our approach guarantees 100% constraint satisfaction in a network's output.
U2 - https://doi.org/10.1609/aaai.v36i5.20512
DO - https://doi.org/10.1609/aaai.v36i5.20512
M3 - Article
SN - 0004-3702
VL - 36
SP - 5700
EP - 5709
JO - Artificial Intelligence
JF - Artificial Intelligence
IS - 5
ER -