Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane

Assaf Elazar, Jonathan Weinstein, Ido Biran, Yearit Fridman, Eitan Bibi, Sarel Jacob Fleishman

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.

Original languageEnglish
Article numbere12125
JournaleLife
Volume5
Issue numberJANUARY2016
DOIs
StatePublished - 29 Jan 2016
Externally publishedYes

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane'. Together they form a unique fingerprint.

Cite this