Mutual influence potential networks: Enabling information sharing in loosely-coupled extended-duration teamwork

Ofra Amir, Barbara J. Grosz, Krzysztof Z. Gajos

Research output: Contribution to journalConference articlepeer-review

6 Scopus citations

Abstract

Complex collaborative activities such as treating patients, co-authoring documents and developing software are often characterized by teamwork that is loosely coupled and extends in time. To remain coordinated and avoid conflicts, team members need to identify dependencies between their activities - which though loosely coupled may interact-and share information appropriately. The loose-coupling of tasks increases the difficulty of identifying dependencies, with the result that team members often lack important information or are overwhelmed by irrelevant information. This paper formalizes a new multi-agent systems problem, Information Sharing in Loosely-Coupled Extended-Duration Teamwork (ISLET). It defines a new representation, Mutual Influence Potential Networks (MIP-Nets) and an algorithm, MIP-DOI, that uses this representation to determine the information that is most relevant to each team member. Importantly, because the extended duration of the teamwork precludes team members from developing complete plans in advance, the MIP-Nets approach, unlike prior work on information sharing, does not rely on a priori knowledge of a team's possible plans. Instead, it models collaboration patterns and dependencies among people and their activities based on team-member interactions. Empirical evaluations show that this approach is able to learn collaboration patterns and identify relevant information to share with team members.

Original languageEnglish
Pages (from-to)796-803
Number of pages8
JournalIJCAI International Joint Conference on Artificial Intelligence
Volume2016-January
StatePublished - 1 Jan 2016
Externally publishedYes
Event25th International Joint Conference on Artificial Intelligence, IJCAI 2016 - New York, United States
Duration: 9 Jul 201615 Jul 2016

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Mutual influence potential networks: Enabling information sharing in loosely-coupled extended-duration teamwork'. Together they form a unique fingerprint.

Cite this