Mysteries of LiF TLD response following high ionisation density irradiation: Nanodosimetry and track structure theory, dose response and glow curve shapes

Y. Horowitz, E. Fuks, H. Datz, L. Oster, J. Livingstone, A. Rosenfeld

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Three outstanding effects of ionisation density on the thermoluminescence (TL) mechanisms giving rise to the glow peaks of LiF:Mg,Ti (TLD-100) are currently under investigation: (1) the dependence of the heavy charged particle (HCP) relative efficiency with increasing ionisation density and the effectiveness of its modelling by track structure theory (TST), (2) the behaviour of the TL efficiency, f (D), as a function of photon energy and dose. These studies are intended to promote the development of a firm theoretical basis for the evaluation of relative TL efficiencies to assist in their application in mixed radiation fields. And (3) the shape of composite peak 5 in the glow curve for various HCP types and energies and following highdose electron irradiation, i.e. the ratio of the intensity of peak 5a to peak 5. Peak 5a is a low-temperature satellite of peak 5 arising from electron-hole capture in a spatially correlated trapping centre/luminescent centre (TC/LC) complex that has been suggested to possess a potential as a solid-state nanodosemeter due to the preferential electron/hole population of the TC/LC at high ionisation density. It is concluded that (1) the predictions of TST are very strongly dependent on the choice of photon energy used in the determination of f (D); (2) modified TST employing calculated values of f (D) at 2 keV is in agreement with 5-MeV alpha particle experimental results for composite peak 5 but underestimates the 1.5-MeV proton relative efficiencies. Both the proton and alpha particle relative TL efficiencies of the high-temperature TL (HTTL) peaks 7 and 8 are underestimated by an order of magnitude suggesting that the HTTL efficiencies are affected by other factors in addition to radial electron dose; (3) the dose-response supralinearity of peaks 7 and 8 change rapidly with photon energy: this behaviour is explained in the framework of the unified interaction model as due to a very strong dependence on photon energy of the relative intensity of localised recombination and (4) the increased width and decrease in Tmax of composite peak 5 as a function of ionisation density is due to the greater relative intensity of peak 5a (a low-temperature component of peak 5 arising from two-energy transfer events, which leads to localised recombination).

Original languageEnglish
Article numberncq381
Pages (from-to)356-372
Number of pages17
JournalRadiation Protection Dosimetry
Volume145
Issue number4
DOIs
StatePublished - 1 Jun 2011

ASJC Scopus subject areas

  • Radiation
  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Public Health, Environmental and Occupational Health

Fingerprint

Dive into the research topics of 'Mysteries of LiF TLD response following high ionisation density irradiation: Nanodosimetry and track structure theory, dose response and glow curve shapes'. Together they form a unique fingerprint.

Cite this