Nanopharmaceutical approach for enhanced anti-cancer activity of betulinic acid in lung-cancer treatment via activation of PARP: Interaction with DNA as a target anti-cancer potential of nano-betulinic acid in lung cancer

Jayeeta Das, Asmita Samadder, Sreemanti Das, Avijit Paul, Anisur Rahman Khuda-Bukhsh

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Objectives: This study examined the relative efficacies of a derivative of betulinic acid (dBA) and its poly (lac- tide-co-glycolide) (PLGA) nano-encapsulated form in A549 lung cancer cells in vivo and in co-mutagen [sodium arsenite (SA) + benzo[a]pyrene (BaP)]-induced lung cancer in mice in vivo. Methods: DBA was loaded with PLGA nanoparticles by using the standard solvent displacement method. The sizes and morphologies of nano-dBA (NdBA) were determined by using transmission electron microscopy (TEM), and their intracellular localization was verified by using confocal microscopy. The binding and interaction of NdBA with calf thymus deoxyribonucleic acid (CT-DNA) as a target were analyzed by using conventional circular dichroism (CD) and melting temperature (Tm) profile data. Apoptotic signalling cascades in vitro and in vivo were studied by using an enzyme-linked immunosorbent assay (ELISA); the ability of NdBA to cross the blood-brain barrier (BBB) was also examined. The stage of cell cycle arrest was confirmed by using a flu orescence-activated cell-sorting (FACS) data analysis. Results: The average size of the nanoparticles was ~ 110 nm. Confocal microscopy images confirmed the presence of NdBA in the cellular cytoplasm. The bio-physical properties of dBA and NdBA ascertained from the CD and the Tm profiles revealed that NdBA had greater interaction with the target DNA than dBA did. Both dBA and NdBA arrested cell proliferation at G0/G1, NdBA showing the greater effect. NdBA also induced a greater degree of cytotoxicity in A549 cells, but it had an insignificant cytotoxic effect in normal L6 cells. The results of flow cytometric, cytogenetial and histopathological studies in mice revealed that NdBA caused less nuclear condensation and DNA damage than dBA did. TEM images showed the presence of NdBA in brain samples of NdBA fed mice, indicating its ability to cross the BBB. Conclusion: Thus, compared to dBA, NdBA appears to have greater chemoprotective potential against lung cancer.

Original languageEnglish
Pages (from-to)37-44
Number of pages8
JournalJournal of Pharmacopuncture
Volume19
Issue number1
DOIs
StatePublished - 1 Mar 2016
Externally publishedYes

Keywords

  • A549 cell line
  • Betulinic acid
  • Drug-DNA interaction
  • Mice
  • Poly (lactide-co-glycolide)

ASJC Scopus subject areas

  • Pharmacology
  • Complementary and alternative medicine

Cite this