Near-Infrared Fluorescent Activated Polymeric Probe for Imaging Intraluminal Colorectal Cancer Tumors

Eva Kopansky-Groisman, Inga Kogan-Zviagin, Osnat Sella-Tavor, Mor Oron-Herman, Ayelet David

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Detection and removal of preneoplastic tumors is crucial for successful colorectal cancer (CRC) therapy. Here we describe the design of a Cathepsin B (CB)-activated polymeric probe, P-(GGFLGK-IR783), for imaging CRC tumors established by intrarectal or subcutaneous (s.c.) implantation of human colon cancer cells (SW-480 and HT-29) in mice. Multiple copies of the near-infrared fluorescent (NIRF) dye IR783 were attached to a single HPMA copolymer backbone via a CB-cleavable linker (GFLG), and the influence of the dye loading on the fluorescence quenching and activation by CB was assessed in vitro, ex vivo, and in vivo. The optimal dose and dosing regimen of P-(GGFLGK-IR783) for colonic tumor detection was determined. Increasing the IR783 loading in the copolymer from 2.5 to 20 mol % resulted in quenching of the fluorescence signal that was activated in vitro by the action of CB from different origins. Following intravenous administration, P-(GGFLGK-IR783)7.5% preferentially accumulated in intrarectal and s.c. implanted tumors, allowing tumor visualization after 4 h and even 48 h postadministration. Activation of P-(GGFLGK-IR783)7.5% by CB was clearly detected in s.c. implanted tumors, revealing about a 4-fold increase in the fluorescence signal in tumors vs healthy colon tissue. The probe containing the CB-cleavable linker produced higher fluorescence signal intensity in tumors, relative to the noncleavable probe. These results indicate that P-(GGFLGK-IR783)7.5% may aid in detecting CRC tumors and can help to guide selective removal of polyps during colonoscopic procedures.

Original languageEnglish
Pages (from-to)3547-3556
Number of pages10
JournalBiomacromolecules
Volume20
Issue number9
DOIs
StatePublished - 9 Sep 2019

ASJC Scopus subject areas

  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Near-Infrared Fluorescent Activated Polymeric Probe for Imaging Intraluminal Colorectal Cancer Tumors'. Together they form a unique fingerprint.

Cite this