@article{b7e5feb3a42b4ab7a884dce0a61527f7,
title = "Network-based forecasting of climate phenomena",
abstract = "Network theory, as emerging from complex systems science, can provide critical predictive power for mitigating the global warming crisis and other societal challenges. Here we discuss the main differences of this approach to classical numerical modeling and highlight several cases where the network approach substantially improved the prediction of high-impact phenomena: 1) El Ni{\~n}o events, 2) droughts in the central Amazon, 3) extreme rainfall in the eastern Central Andes, 4) the Indian summer monsoon, and 5) extreme stratospheric polar vortex states that influence the occurrence of wintertime cold spells in northern Eurasia. In this perspective, we argue that network-based approaches can gainfully complement numerical modeling.",
keywords = "Climate networks, Climate phenomena, Forecasting, Network theory",
author = "Josef Ludescher and Maria Martin and Niklas Boers and Armin Bunde and Catrin Ciemer and Jingfang Fan and Shlomo Havlin and Marlene Kretschmer and J{\"u}rgen Kurths and Jakob Runge and Veronika Stolbova and Elena Surovyatkina and Schellnhuber, {Hans Joachim}",
note = "Funding Information: We thank the anonymous reviewers for their very constructive comments and suggestions. J.L., J.F., and E.S. acknowledge the support of the East Africa Peru India Climate Capacities project funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (Grant 18_II_149_Global_A_Risikovorhersage). N.B. acknowledges funding by the Volkswagen foundation and the European Union{\textquoteright}s Horizon 2020 research and innovation program (EU H2020) under Grant Agreement 820970 (Tipping Points in the Earth System). C.C. acknowledges funding by the German Research Foundation/S{\~a}o Paulo Research Foundation (International Research Training Group 1740/Thematic Research Project 2015/50122-0). S.H. thanks the Israel Science Foundation (Grant 189/19), the joint China-Israel Science Foundation (Grant 3132/19), the Bar-Ilan University Center for Research in Applied Cryptography and Cyber Security, NSF-US–Israel Binational Science Foundation Grant 2019740, the EU H2020 project Real-time earthquake risk reduction for a resilient Europe, and Defense Threat Reduction Agency Grant HDTRA-1-19-1-0016 for financial support. M.K. has received funding from the EU H2020 under Marie Sk{\l}odowska-Curie Grant Agreement 841902. J.K. acknowledges support from the Russian Ministry of Science and Education Agreement 13.1902.21.0026. V.S. acknowledges support from the Russian Foundation for Basic Research (Grant 20-07-01071). Publisher Copyright: {\textcopyright} 2021 National Academy of Sciences. All rights reserved.",
year = "2021",
month = nov,
day = "23",
doi = "10.1073/pnas.1922872118",
language = "English",
volume = "118",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
publisher = "National Academy of Sciences",
number = "47",
}