New High Dimensional Expanders from Covers

Yotam Dikstein

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

We present a new construction of high dimensional expanders based on covering spaces of simplicial complexes. High dimensional expanders (HDXs) are hypergraph analogues of expander graphs. They have many uses in theoretical computer science, but unfortunately only few constructions are known which have arbitrarily small local spectral expansion. We give a randomized algorithm that takes as input a high dimensional expander X (satisfying some mild assumptions). It outputs a sub-complex Y † X that is a high dimensional expander and has infinitely many simplicial covers. These covers form new families of bounded-degree high dimensional expanders. The sub-complex Y inherits X's underlying graph and its links are sparsifications of the links of X. When the size of the links of X is O(log|X|), this algorithm can be made deterministic. Our algorithm is based on the groups and generating sets discovered by Lubotzky, Samuels and Vishne (2005), that were used to construct the first discovered high dimensional expanders. We show these groups give rise to many more "randomized"high dimensional expanders. In addition, our techniques also give a random sparsification algorithm for high dimensional expanders, that maintains its local spectral properties. This may be of independent interest.

Original languageEnglish
Title of host publicationSTOC 2023 - Proceedings of the 55th Annual ACM Symposium on Theory of Computing
EditorsBarna Saha, Rocco A. Servedio
PublisherAssociation for Computing Machinery
Pages826-838
Number of pages13
ISBN (Electronic)9781450399135
DOIs
StatePublished - 2 Jun 2023
Externally publishedYes
Event55th Annual ACM Symposium on Theory of Computing, STOC 2023 - Orlando, United States
Duration: 20 Jun 202323 Jun 2023

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference55th Annual ACM Symposium on Theory of Computing, STOC 2023
Country/TerritoryUnited States
CityOrlando
Period20/06/2323/06/23

Keywords

  • Covers
  • HDX
  • High Dimensional Expanders

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'New High Dimensional Expanders from Covers'. Together they form a unique fingerprint.

Cite this