TY - JOUR
T1 - New structural and functional aspects of the type I interferon-receptor interaction revealed by comprehensive mutational analysis of the binding interface
AU - Piehler, J.
AU - Roisman, L. C.
AU - Schreiber, G.
PY - 2000/12/22
Y1 - 2000/12/22
N2 - Type I interferons bind to two cell surface receptors, ifnar1 and ifnar2, as the first step in the activation of several signal transduction pathways that elicit an antiviral state and an anti-proliferative response. Here, we quantitatively mapped the complete binding region of ifnar2 on interferon (IFN)α2 by 35 individual mutations to alanine and isosteric residues. Of the six "hot-spot" residues identified (Leu-30, Arg-33, Arg-144, Ala-145, Met-148, and Arg-149), four are located on the E-helix, which is located at the center of the binding site flanked by residues on the A-helix and the AB-loop. The contribution of residues of the D-helix, which have been previously implicated in binding, proved to be marginal for the interaction with the extracellular domain of ifnar2. Interestingly, the ifnar2 binding site overlaps the largest continuous hydrophobic patch on IFNα2. Thus, hydrophobic interactions seem to play a significant role stabilizing this interaction, with the charged residues contributing toward the rapid association of the complex. Relating the anti-viral and anti-proliferative activity of the various interferon mutants with their affinity toward ifnar2 results in linear function over the whole range of affinities investigated, suggesting that ifnar2 binding is the rate-determining step in cellular activation. Dose-time analysis of the anti-viral response revealed that shortening the incubation time of low-level activation cannot be compensated by higher IFN doses. Considering the strict dependence of the cellular response on affinity, these results suggest that for maintaining transcription of IFN-responsive genes over a longer time period, low but continuous signaling through the IFN receptor is essential.
AB - Type I interferons bind to two cell surface receptors, ifnar1 and ifnar2, as the first step in the activation of several signal transduction pathways that elicit an antiviral state and an anti-proliferative response. Here, we quantitatively mapped the complete binding region of ifnar2 on interferon (IFN)α2 by 35 individual mutations to alanine and isosteric residues. Of the six "hot-spot" residues identified (Leu-30, Arg-33, Arg-144, Ala-145, Met-148, and Arg-149), four are located on the E-helix, which is located at the center of the binding site flanked by residues on the A-helix and the AB-loop. The contribution of residues of the D-helix, which have been previously implicated in binding, proved to be marginal for the interaction with the extracellular domain of ifnar2. Interestingly, the ifnar2 binding site overlaps the largest continuous hydrophobic patch on IFNα2. Thus, hydrophobic interactions seem to play a significant role stabilizing this interaction, with the charged residues contributing toward the rapid association of the complex. Relating the anti-viral and anti-proliferative activity of the various interferon mutants with their affinity toward ifnar2 results in linear function over the whole range of affinities investigated, suggesting that ifnar2 binding is the rate-determining step in cellular activation. Dose-time analysis of the anti-viral response revealed that shortening the incubation time of low-level activation cannot be compensated by higher IFN doses. Considering the strict dependence of the cellular response on affinity, these results suggest that for maintaining transcription of IFN-responsive genes over a longer time period, low but continuous signaling through the IFN receptor is essential.
UR - http://www.scopus.com/inward/record.url?scp=0034704093&partnerID=8YFLogxK
U2 - 10.1074/jbc.M006854200
DO - 10.1074/jbc.M006854200
M3 - Article
C2 - 10984492
AN - SCOPUS:0034704093
SN - 0021-9258
VL - 275
SP - 40425
EP - 40433
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 51
ER -