Nocturnal sound analysis for the diagnosis of obstructive sleep apnea

Nir Ben-Israel, Ariel Tarasiuk, Yaniv Zigel

Research output: Contribution to conferencePaperpeer-review

28 Scopus citations

Abstract

A novel method for screening obstructive sleep apnea syndrome (OSAs) based on nocturnal acoustic signal is proposed. Full-night audio signals from sixty subjects were segmented into snore, noise and silence events using semiautomatic algorithm based on Gaussian mixture models which achieves more than 90% (92%) sensitivity (specificity) and produces an average of 2,000 snores per subject. A classification into 3 groups is proposed for the diagnosis: comparison group - non-OSA subjects (apnea hypopnea index, AHI<10), mild to moderate OSA (10<AHI<30) and severe OSA (AHI>30). A Bayes classifier was implemented, fed with five acoustic features, all correlated with the severity of the syndrome: (1) Inter Event Silence, which quantifies segments suspicious as apnea; (2) Mel Cepstability, measures the entire night stability of the spectrum, expressed using mel-frequency cepstrum; (3) Energy Running Variance, a criterion for the variation of the nocturnal acoustic pattern; (4) Apneic Phase Ratio, exploiting the finding that snores around apnea events expressing larger acoustic variation; and (5) Pitch Density. Correct classification of 92% for resubstitution method and 80% for 5-fold cross validation method was achieved. Moreover, in a case of two groups with a threshold of AHI=10, a sensitivity (specificity) of 96.5% (90.6%) and 87.5% (82.1%) for resubstitution and cross-validation respectively were obtained.

Original languageEnglish
Pages6146-6149
Number of pages4
DOIs
StatePublished - 1 Dec 2010
Event2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10 - Buenos Aires, Argentina
Duration: 31 Aug 20104 Sep 2010

Conference

Conference2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Country/TerritoryArgentina
CityBuenos Aires
Period31/08/104/09/10

Fingerprint

Dive into the research topics of 'Nocturnal sound analysis for the diagnosis of obstructive sleep apnea'. Together they form a unique fingerprint.

Cite this