TY - GEN
T1 - Node embedding over temporal graphs
AU - Singer, Uriel
AU - Guy, Ido
AU - Radinsky, Kira
N1 - Publisher Copyright:
© 2019 International Joint Conferences on Artificial Intelligence. All rights reserved.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - In this work, we present a method for node embedding in temporal graphs. We propose an algorithm that learns the evolution of a temporal graph's nodes and edges over time and incorporates this dynamics in a temporal node embedding framework for different graph prediction tasks. We present a joint loss function that creates a temporal embedding of a node by learning to combine its historical temporal embeddings, such that it optimizes per given task (e.g., link prediction). The algorithm is initialized using static node embeddings, which are then aligned over the representations of a node at different time points, and eventually adapted for the given task in a joint optimization. We evaluate the effectiveness of our approach over a variety of temporal graphs for the two fundamental tasks of temporal link prediction and multi-label node classification, comparing to competitive baselines and algorithmic alternatives. Our algorithm shows performance improvements across many of the datasets and baselines and is found particularly effective for graphs that are less cohesive, with a lower clustering coefficient.
AB - In this work, we present a method for node embedding in temporal graphs. We propose an algorithm that learns the evolution of a temporal graph's nodes and edges over time and incorporates this dynamics in a temporal node embedding framework for different graph prediction tasks. We present a joint loss function that creates a temporal embedding of a node by learning to combine its historical temporal embeddings, such that it optimizes per given task (e.g., link prediction). The algorithm is initialized using static node embeddings, which are then aligned over the representations of a node at different time points, and eventually adapted for the given task in a joint optimization. We evaluate the effectiveness of our approach over a variety of temporal graphs for the two fundamental tasks of temporal link prediction and multi-label node classification, comparing to competitive baselines and algorithmic alternatives. Our algorithm shows performance improvements across many of the datasets and baselines and is found particularly effective for graphs that are less cohesive, with a lower clustering coefficient.
UR - http://www.scopus.com/inward/record.url?scp=85074911256&partnerID=8YFLogxK
U2 - 10.24963/ijcai.2019/640
DO - 10.24963/ijcai.2019/640
M3 - Conference contribution
AN - SCOPUS:85074911256
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 4605
EP - 4612
BT - Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
A2 - Kraus, Sarit
PB - International Joint Conferences on Artificial Intelligence
T2 - 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Y2 - 10 August 2019 through 16 August 2019
ER -