Abstract
Much of today’s communication is carried out over large wireless systems with different input-output behaviors. In this work, we compare the power of central abstractions of wireless communication through the general notion of boolean symmetric f-channels: In every round of the f-channel, each of its n parties decides to either broadcast or not, and the channel outputs f(m), where m is the number of broadcasting parties.
Our first result is that the well studied beeping channel, where f is the threshold-1 function, is not stronger than any other f-channel. To this end, we design a protocol over the f-channel and prove that any protocol that simulates it over the beeping channel blows up the round complexity by a factor of Ω(log n). Our lower bound technique may be of independent interest, as it essentially generalizes the popular fooling set technique by exploiting a "local" relaxation of combinatorial rectangles.
Curiously, while this result shows the limitations of a noiseless channel, namely, the beeping channel, we are able to use it to show the limitations of the noisy version of many other channels. This includes the extensively studied single-hop radio network model with collisions-as-silence (CAS), which is equivalent to the f-channel with f(m) = 1 iff m = 1.
In particular, our second and main result, obtained from the first, shows that converting CAS protocols to noise resilient ones may incur a large performance overhead, i.e., no constant rate interactive code exists. To this end, we design a CAS protocol and prove that any protocol that simulates it over the noisy CAS model with correlated stochastic noise, blows up the round complexity by a factor of Ω(log n). We mention that the Ω(log n) overhead in both our results is tight.
Our first result is that the well studied beeping channel, where f is the threshold-1 function, is not stronger than any other f-channel. To this end, we design a protocol over the f-channel and prove that any protocol that simulates it over the beeping channel blows up the round complexity by a factor of Ω(log n). Our lower bound technique may be of independent interest, as it essentially generalizes the popular fooling set technique by exploiting a "local" relaxation of combinatorial rectangles.
Curiously, while this result shows the limitations of a noiseless channel, namely, the beeping channel, we are able to use it to show the limitations of the noisy version of many other channels. This includes the extensively studied single-hop radio network model with collisions-as-silence (CAS), which is equivalent to the f-channel with f(m) = 1 iff m = 1.
In particular, our second and main result, obtained from the first, shows that converting CAS protocols to noise resilient ones may incur a large performance overhead, i.e., no constant rate interactive code exists. To this end, we design a CAS protocol and prove that any protocol that simulates it over the noisy CAS model with correlated stochastic noise, blows up the round complexity by a factor of Ω(log n). We mention that the Ω(log n) overhead in both our results is tight.
Original language | English |
---|---|
Title of host publication | 14th Innovations in Theoretical Computer Science Conference (ITCS 2023) |
Editors | Yael Tauman Kalai |
Place of Publication | Dagstuhl, Germany |
Publisher | Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik |
Pages | 46:1-46:20 |
Number of pages | 20 |
Volume | 251 |
ISBN (Electronic) | 9783959772631 |
ISBN (Print) | 978-3-95977-263-1 |
DOIs | |
State | Published - 1 Feb 2023 |
Event | 14th Innovations in Theoretical Computer Science Conference, ITCS 2023 - Cambridge, United States Duration: 10 Jan 2023 → 13 Jan 2023 |
Publication series
Name | Leibniz International Proceedings in Informatics, LIPIcs |
---|---|
Volume | 251 |
ISSN (Print) | 1868-8969 |
Conference
Conference | 14th Innovations in Theoretical Computer Science Conference, ITCS 2023 |
---|---|
Country/Territory | United States |
City | Cambridge |
Period | 10/01/23 → 13/01/23 |
Keywords
- Beeping Model
- Radio networks