Abstract
Recent experimental results showing atypical nonlinear absorption and marked deviations from well known universality in the low temperature acoustic and dielectric losses in amorphous solids prove the need for improving the understanding of the nature of two-level systems (TLSs) in these materials. Here we suggest the study of TLSs focused on their properties which are nonuniversal. Our theoretical analysis shows that the standard tunneling model and the recently suggested two-TLS model provide markedly different predictions for the experimental outcome of these studies. Our results may be directly tested in disordered lattices, e.g KBr:CN, where there is ample theoretical support for the validity of the two-TLS model, as well as in amorphous solids. Verification of our results in the latter will significantly enhance understanding of the nature of TLSs in amorphous solids, and the ability to manipulate them and reduce their destructive effect in various cutting edge applications including superconducting qubits.
Original language | English |
---|---|
Article number | 063048 |
Journal | New Journal of Physics |
Volume | 20 |
Issue number | 6 |
DOIs | |
State | Published - 1 Jun 2018 |
Keywords
- amorphous solids
- disordered crystals
- nonlinear response
- two-level systems
ASJC Scopus subject areas
- General Physics and Astronomy