Abstract
We introduce a remarkable new family of norms on the space of (Formula presented.) complex matrices. These norms arise from the combinatorial properties of symmetric functions, and their construction and validation involve probability theory, partition combinatorics, and trace polynomials in non-commuting variables. Our norms enjoy many desirable analytic and algebraic properties, such as an elegant determinantal interpretation and the ability to distinguish certain graphs that other matrix norms cannot. Furthermore, they give rise to new dimension-independent tracial inequalities. Their potential merits further investigation.
Original language | English |
---|---|
Pages (from-to) | 2078-2100 |
Number of pages | 23 |
Journal | Bulletin of the London Mathematical Society |
Volume | 54 |
Issue number | 6 |
DOIs | |
State | Published - 1 Dec 2022 |
Externally published | Yes |
ASJC Scopus subject areas
- General Mathematics