Abstract
Self-assembling nanostructures were prepared from novel cationic amphiphilic compounds synthesized from vernonia oil, a natural epoxydized triglyceride. The presence of a 12,13-epoxy group on the CIS unsaturated fatty acid, vernolic acid, which is the main constituent of vernonia oil, permitted the synthesis of novel amphiphilic derivatives with a hydrogen-bonding hydroxyl and a cationic headgroup moiety on adjacent carbon atoms. The amphiphiles were prepared in a two-stage synthesis that comprised opening of the epoxy groups with a haloacetic acid, followed by quaternization of the halo group with a tertiary amine containing a C12 aliphatic chain. Intact vernonia oil as the starting material gave a triple-headed cationic amphiphile, containing three vernolic acid derived moieties connected through a glycerol backbone. A single-headed amphiphile with two alkyl chains and a single quaternary ammonium headgroup was synthesized from the methyl ester of vernolic acid as the starting material. The triple-headed derivative could form nonencapsulating structures. Cholesterol was required in the formulation (1:1) to make spherical vesicles that could encapsulate a water-soluble marker. The single-headed derivative, however, formed spherical encapsulating vesicles without cholesterol. TEM, NMR, and FT-IR were used to characterize the vesicles, and molecular structure vs morphology relationships were postulated on the basis of these data. The triple-headed amphiphile also formed a DNA complex that was highly resistant to hydrolysis by DNase. This amphiphile-DNA complex was used as vector for gene transfer in cell culture demonstrating efficient DNA transfection.
Original language | English |
---|---|
Pages (from-to) | 7638-7645 |
Number of pages | 8 |
Journal | Langmuir |
Volume | 21 |
Issue number | 17 |
DOIs | |
State | Published - 16 Aug 2005 |
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry