Abstract
The metal oxide cluster α-AlW 11O 39 9- (1), readily imaged by cryogenic transmission electron microscopy (cryo-TEM), is used as a diagnostic protecting anion to investigate the self-assembly of alkanethiolate monolayers on electrostatically stabilized gold nanoparticles in water. Monolayers of 1 on 13.8 ± 0.9 nm diameter gold nanoparticles are displaced from the gold surface by mercaptoundecacarboxylate, HS(CH 2) 10CO 2 - (11-MU). During this process, no aggregation is observed by UV-vis spectroscopy, and the intermediate ligand-shell organizations of 1 in cryo-TEM images indicate the presence of growing hydrophobic domains, or "islands", of alkanethiolates. UV-vis spectroscopic "titrations", based on changes in the surface plasmon resonance upon exchange of 1 by thiol, reveal that the 330 ± 30 molecules of 1 initially present on each gold nanoparticle are eventually replaced by 2800 ± 30 molecules of 11-MU. UV-vis kinetic data for 11-MU-monolayer formation reveal a slow phase, followed by rapid self-assembly. The Johnson, Mehl, Avrami, and Kolmogorov model gives an Avrami parameter of 2.9, indicating continuous nucleation and two-dimensional island growth. During nucleation, incoming 11-MU ligands irreversibly displace 1 from the Au-NP surface via an associative mechanism, with k nucleation = (6.1 ± 0.4) × 10 2 M -1 s -1, and 19 ± 8 nuclei, each comprised of ca. 8 alkanethiolates, appear on the gold-nanoparticle surface before rapid growth becomes kinetically dominant. Island growth is also first-order in [11-MU], and its larger rate constant, k growth, (2.3 ± 0.2) × 10 4 M -1 s -1, is consistent with destabilization of molecules of 1 at the boundaries between the hydrophobic (alkanethiolate) and the electrostatically stabilized (inorganic) domains.
Original language | English |
---|---|
Pages (from-to) | 629-640 |
Number of pages | 12 |
Journal | ACS Nano |
Volume | 6 |
Issue number | 1 |
DOIs | |
State | Published - 24 Jan 2012 |
Keywords
- alkanethiol
- cryo-TEM
- gold nanoparticle
- island growth
- kinetics
- monolayer
ASJC Scopus subject areas
- General Materials Science
- General Engineering
- General Physics and Astronomy