Abstract
Observation of a spin symmetry breaking effect in plasmonic nanoscale structures due to spin-orbit interaction is presented. We demonstrate a nanoplasmonic structure which exhibits a crucial role of an angular momentum (AM) selection rule in a light-surface plasmon scattering process. In our experiment, the intrinsic AM (spin) of the incident radiation is coupled to the extrinsic momentum (orbital AM) of the surface plasmons via spin-orbit interaction. Due to this effect, we achieved a spin-controlled enhanced transmission through a coaxial nanoaperture.
Original language | English |
---|---|
Pages (from-to) | 3016-3019 |
Number of pages | 4 |
Journal | Nano Letters |
Volume | 9 |
Issue number | 8 |
DOIs | |
State | Published - 12 Aug 2009 |
Externally published | Yes |
ASJC Scopus subject areas
- Bioengineering
- General Chemistry
- General Materials Science
- Condensed Matter Physics
- Mechanical Engineering