Obtaining adjustable regularization for free via iterate averaging

Jingfeng Wu, Vladimir Braverman, Lin F. Yang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Regularization for optimization is a crucial technique to avoid overfitting in machine learning. In order to obtain the best performance, we usually train a model by tuning the regularization parameters. It becomes costly, however, when a single round of training takes significant amount of time. Very recently, Neu & Rosasco (2018) show that if we run stochastic gradient descent (SGD) on linear regression problems, then by averaging the SGD iterates properly, we obtain a regularized solution. It left open whether the same phenomenon can be achieved for other optimization problems and algorithms. In this paper, we establish an averaging scheme that provably converts the iterates of SGD on an arbitrary strongly convex and smooth objective function to its regularized counterpart with an adjustable regularization parameter. Our approaches can be used for accelerated and preconditioned optimization methods as well. We further show that the same methods work empirically on more general optimization objectives including neural networks. In sum, we obtain adjustable regularization for free for a large class of optimization problems and resolve an open question raised by Neu & Rosasco (2018).

Original languageEnglish
Title of host publication37th International Conference on Machine Learning, ICML 2020
EditorsHal Daume, Aarti Singh
PublisherInternational Machine Learning Society (IMLS)
Pages10275-10285
Number of pages11
ISBN (Electronic)9781713821120
StatePublished - 1 Jan 2020
Externally publishedYes
Event37th International Conference on Machine Learning, ICML 2020 - Virtual, Online
Duration: 13 Jul 202018 Jul 2020

Publication series

Name37th International Conference on Machine Learning, ICML 2020
VolumePartF168147-14

Conference

Conference37th International Conference on Machine Learning, ICML 2020
CityVirtual, Online
Period13/07/2018/07/20

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Fingerprint

Dive into the research topics of 'Obtaining adjustable regularization for free via iterate averaging'. Together they form a unique fingerprint.

Cite this