TY - JOUR
T1 - Oceanic and orogenic fluid-rock interaction in 18O/16O-enriched metagabbros of an ophiolite (Tinos, Cyclades)
AU - Putlitz, Benita
AU - Katzir, Yaron
AU - Matthews, Alan
AU - Valley, John W.
N1 - Funding Information:
We thank Mike Spicuzza for assistance with oxygen isotope analyses and technical support in general and Brian Hess for help with sample preparation. Lukas Baumgartner is thanked for helpful discussion of fluid flow modeling. Hydrogen isotope mass-spectrometry was performed by Dr A. Ayalon at the Geological Survey of Israel. B.P. also thanks Mike Spicuzza for his help during her visits in Madison. This work was supported by a grant from the United States–Israel Binational Science Foundation (BSF), Jerusalem. The stable isotope laboratory at the University of Wisconsin is supported by NSF, EAR 96-28260 and DOE 93 ER14389. We are grateful to Mike Bickle and Colin Graham for thoughtful reviews that significantly improved this paper. Y.K. is supported by an Albert and Alice Weeks post-doctoral fellowship of the Department of Geology and Geophysics, University of Wisconsin, Madison. [BW]
PY - 2001/1/1
Y1 - 2001/1/1
N2 - Two spatial scales of fluid-rock interaction in an ophiolite suite are revealed by oxygen isotope and hydrogen isotope studies of metagabbros on the island of Tinos (Cyclades, Greece). Sequentially formed mineral generations in the metagabbros include relict igneous augite, hornblende of sub-seafloor hydrothermal origin, and actinolite and albite formed by regional greenschist-facies metamorphism during orogenesis. With the exception of augite (δ18O = 4.4-5.6 ‰), the metagabbros are characterized by unusually high δ18O values: Hornblende (5.8-7.4 ‰), actinolite (6.5-10.2 ‰), feldspar (14.6-14.9 ‰) and whole rocks (7.0-10.5 ‰). Hornblende δD values range from -57 to -66 ‰. The high δ18O values and the δD range of the hornblendes are compatible with interaction of oceanic gabbro with seawater that had previously been enriched in 18O/16O (δ18O = 6.5-8 ‰) by isotopic exchange at moderate to high temperatures. The high degree of oceanic alteration in the layered gabbros, mass balance calculations of isotopic exchange, and field evidence for early oceanic thrusting suggest that seawater could have penetrated deeply into the ocean crust, becoming 18O/16O-enriched through isotopic exchange with gabbros at progressively increasing temperature. Upward, down-temperature flow of the high-δ18O water would be very effective in elevating the δ18O values of gabbros. The regional greenschist metamorphic overprint of the ophiolite, possibly the result of continued thrusting and piling up of nappes during obduction, is characterized by localized fluid-rock exchange. Actinolite in massive gabbroic layers has δ18O values (6.5-7.2 ‰) close to those of the hornblende, whereas in deformed meter-sized gabbroic blocks the amphiboles have significantly higher values (8.4-10.2 ‰). Likewise, albite in the gabbroic blocks has high δ18O values of ca. 15 ‰ that are ascribed to meter-scale exchange with 18O-rich fluids derived from dehydration reactions in low-temperature hydrothermally altered basaltic host rock enclosing the blocks. Deformation-enhanced permeability facilitated fluid infiltration in gabbroic blocks, whereas the relatively undeformed, and therefore less permeable, massive gabbros experienced minor interaction with fluids. The orogenic fluid-rock interaction thus represents local-scale redistribution of hydrous mineral components introduced during seafloor hydrothermal exchange.
AB - Two spatial scales of fluid-rock interaction in an ophiolite suite are revealed by oxygen isotope and hydrogen isotope studies of metagabbros on the island of Tinos (Cyclades, Greece). Sequentially formed mineral generations in the metagabbros include relict igneous augite, hornblende of sub-seafloor hydrothermal origin, and actinolite and albite formed by regional greenschist-facies metamorphism during orogenesis. With the exception of augite (δ18O = 4.4-5.6 ‰), the metagabbros are characterized by unusually high δ18O values: Hornblende (5.8-7.4 ‰), actinolite (6.5-10.2 ‰), feldspar (14.6-14.9 ‰) and whole rocks (7.0-10.5 ‰). Hornblende δD values range from -57 to -66 ‰. The high δ18O values and the δD range of the hornblendes are compatible with interaction of oceanic gabbro with seawater that had previously been enriched in 18O/16O (δ18O = 6.5-8 ‰) by isotopic exchange at moderate to high temperatures. The high degree of oceanic alteration in the layered gabbros, mass balance calculations of isotopic exchange, and field evidence for early oceanic thrusting suggest that seawater could have penetrated deeply into the ocean crust, becoming 18O/16O-enriched through isotopic exchange with gabbros at progressively increasing temperature. Upward, down-temperature flow of the high-δ18O water would be very effective in elevating the δ18O values of gabbros. The regional greenschist metamorphic overprint of the ophiolite, possibly the result of continued thrusting and piling up of nappes during obduction, is characterized by localized fluid-rock exchange. Actinolite in massive gabbroic layers has δ18O values (6.5-7.2 ‰) close to those of the hornblende, whereas in deformed meter-sized gabbroic blocks the amphiboles have significantly higher values (8.4-10.2 ‰). Likewise, albite in the gabbroic blocks has high δ18O values of ca. 15 ‰ that are ascribed to meter-scale exchange with 18O-rich fluids derived from dehydration reactions in low-temperature hydrothermally altered basaltic host rock enclosing the blocks. Deformation-enhanced permeability facilitated fluid infiltration in gabbroic blocks, whereas the relatively undeformed, and therefore less permeable, massive gabbros experienced minor interaction with fluids. The orogenic fluid-rock interaction thus represents local-scale redistribution of hydrous mineral components introduced during seafloor hydrothermal exchange.
KW - Cyclades
KW - Gabbros
KW - Metamorphism
KW - O-18/O-16
KW - Ophiolite
UR - http://www.scopus.com/inward/record.url?scp=0035657017&partnerID=8YFLogxK
U2 - 10.1016/S0012-821X(01)00508-8
DO - 10.1016/S0012-821X(01)00508-8
M3 - Article
AN - SCOPUS:0035657017
SN - 0012-821X
VL - 193
SP - 99
EP - 113
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
IS - 1-2
ER -