Abstract
It is well known that the widely applied Taylor diffusion model predicts the longitudinal distribution of tracers. Some recent studies indicate that the transverse concentration distribution is highly significant for large dispersion times. The present study describes an analytical approach to explore the two-dimensional concentration dispersion of a solute in the hydromagnetic laminar flow between two parallel plates with boundary absorption. The analytical expressions for the transverse concentration distribution and the mean concentration distribution of the tracers up to second-order approximation are derived using Mei's homogenization technique. The effects of the Péclet number and Hartmann number on the Taylor dispersivity are shown. It is also observed how the transverse and longitudinal mean concentration distributions are influenced by the magnetic effect, dispersion times, and boundary absorption. It is remarkable to note that the boundary absorption creates a large non-uniformity on the transverse concentration in a hydromagnetic flow between two parallel plates.
Original language | English |
---|---|
Article number | 083609 |
Journal | Physics of Fluids |
Volume | 33 |
Issue number | 8 |
DOIs | |
State | Published - 1 Aug 2021 |
Externally published | Yes |
ASJC Scopus subject areas
- Computational Mechanics
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Fluid Flow and Transfer Processes