TY - JOUR
T1 - On Non-Topological Solutions for Planar Liouville Systems of Toda-Type
AU - Poliakovsky, Arkady
AU - Tarantello, Gabriella
N1 - Publisher Copyright:
© 2016, Springer-Verlag Berlin Heidelberg.
PY - 2016/10/1
Y1 - 2016/10/1
N2 - Motivated by the study of non-abelian Chern Simons vortices of non-topological type in Gauge Field Theory, see e.g. Gudnason (Nucl Phys B 821:151–169, 2009), Gudnason (Nucl Phys B 840:160–185, 2010) and Dunne (Lecture Notes in Physics, New Series, vol 36. Springer, Heidelberg, 1995), we analyse the solvability of the following (normalised) Liouville-type system in the presence of singular sources: (Formula presented.) with τ> 0 and N> 0. We identify necessary and sufficient conditions on the parameter τ and the “flux” pair: (β1, β2) , which ensure the radial solvability of (1) τ. Since for τ=1/2, problem (1)τ reduces to the (integrable) 2 × 2 Toda system, in particular we recover the existence result of Lin et al. (Invent Math 190(1):169–207, 2012) and Jost and Wang (Int Math Res Not 6:277–290, 2002), concerning this case. Our method relies on a blow-up analysis for solutions of (1)τ, which (even in the radial setting) takes new turns compared to the single equation case. We mention that our approach also permits handling the non-symmetric case, where in each of the two equations in (1)τ, the parameter τ is replaced by two different parameters τ1> 0 and τ2> 0 respectively, and also when the second equation in (1)τ includes a Dirac measure supported at the origin.
AB - Motivated by the study of non-abelian Chern Simons vortices of non-topological type in Gauge Field Theory, see e.g. Gudnason (Nucl Phys B 821:151–169, 2009), Gudnason (Nucl Phys B 840:160–185, 2010) and Dunne (Lecture Notes in Physics, New Series, vol 36. Springer, Heidelberg, 1995), we analyse the solvability of the following (normalised) Liouville-type system in the presence of singular sources: (Formula presented.) with τ> 0 and N> 0. We identify necessary and sufficient conditions on the parameter τ and the “flux” pair: (β1, β2) , which ensure the radial solvability of (1) τ. Since for τ=1/2, problem (1)τ reduces to the (integrable) 2 × 2 Toda system, in particular we recover the existence result of Lin et al. (Invent Math 190(1):169–207, 2012) and Jost and Wang (Int Math Res Not 6:277–290, 2002), concerning this case. Our method relies on a blow-up analysis for solutions of (1)τ, which (even in the radial setting) takes new turns compared to the single equation case. We mention that our approach also permits handling the non-symmetric case, where in each of the two equations in (1)τ, the parameter τ is replaced by two different parameters τ1> 0 and τ2> 0 respectively, and also when the second equation in (1)τ includes a Dirac measure supported at the origin.
UR - http://www.scopus.com/inward/record.url?scp=84973168483&partnerID=8YFLogxK
U2 - 10.1007/s00220-016-2662-3
DO - 10.1007/s00220-016-2662-3
M3 - Article
AN - SCOPUS:84973168483
SN - 0010-3616
VL - 347
SP - 223
EP - 270
JO - Communications in Mathematical Physics
JF - Communications in Mathematical Physics
IS - 1
ER -