TY - GEN
T1 - On Parallel External-Memory Bidirectional Search
AU - Siag, Lior
AU - Shperberg, Shahaf S.
AU - Felner, Ariel
AU - Sturtevant, Nathan R.
N1 - Publisher Copyright:
© 2024 The Authors.
PY - 2024/10/16
Y1 - 2024/10/16
N2 - Parallelization and External Memory (PEM) techniques have significantly enhanced the capabilities of search algorithms when solving large-scale problems. Previous research on PEM has primarily centered on unidirectional algorithms, with only one publication on bidirectional PEM that focuses on the meet-in-the-middle (MM) algorithm. Building upon this foundation, this paper presents a framework that integrates both uni- and bi-directional best-first search algorithms into this framework. We then develop a PEM variant of the state-of-the-art bidirectional heuristic search (BiHS) algorithm BAE* (PEM-BAE*). As previous work on BiHS did not focus on scaling problem sizes, this work enables us to evaluate bidirectional algorithms on hard problems. Empirical evaluation shows that PEM-BAE* outperforms the PEM variants of A* and the MM algorithm, as well as a parallel variant of IDA*. These findings mark a significant milestone, revealing that bidirectional search algorithms clearly outperform unidirectional search algorithms across several domains, even when equipped with state-of-the-art heuristics.
AB - Parallelization and External Memory (PEM) techniques have significantly enhanced the capabilities of search algorithms when solving large-scale problems. Previous research on PEM has primarily centered on unidirectional algorithms, with only one publication on bidirectional PEM that focuses on the meet-in-the-middle (MM) algorithm. Building upon this foundation, this paper presents a framework that integrates both uni- and bi-directional best-first search algorithms into this framework. We then develop a PEM variant of the state-of-the-art bidirectional heuristic search (BiHS) algorithm BAE* (PEM-BAE*). As previous work on BiHS did not focus on scaling problem sizes, this work enables us to evaluate bidirectional algorithms on hard problems. Empirical evaluation shows that PEM-BAE* outperforms the PEM variants of A* and the MM algorithm, as well as a parallel variant of IDA*. These findings mark a significant milestone, revealing that bidirectional search algorithms clearly outperform unidirectional search algorithms across several domains, even when equipped with state-of-the-art heuristics.
UR - http://www.scopus.com/inward/record.url?scp=85216680656&partnerID=8YFLogxK
U2 - 10.3233/FAIA240991
DO - 10.3233/FAIA240991
M3 - Conference contribution
AN - SCOPUS:85216680656
T3 - Frontiers in Artificial Intelligence and Applications
SP - 4190
EP - 4197
BT - ECAI 2024 - 27th European Conference on Artificial Intelligence, Including 13th Conference on Prestigious Applications of Intelligent Systems, PAIS 2024, Proceedings
A2 - Endriss, Ulle
A2 - Melo, Francisco S.
A2 - Bach, Kerstin
A2 - Bugarin-Diz, Alberto
A2 - Alonso-Moral, Jose M.
A2 - Barro, Senen
A2 - Heintz, Fredrik
PB - IOS Press BV
T2 - 27th European Conference on Artificial Intelligence, ECAI 2024
Y2 - 19 October 2024 through 24 October 2024
ER -