On the Capacity of Sampled Interference-Limited Communications Channels

Nir Shlezinger, Emeka Abakasanga, Ron Dabora, Yonina C. Eldar

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Interference-limited communications plays an important role in future digital communication architectures. In such scenarios, the received signal is corrupted by an interfering communications signal, which is typically modeled as a cyclostationary process in continuous-time. To facilitate digital processing, the receiver typically samples the received signal synchronously with the symbol rate of the information signal. The sampled received signal thus contains an interference component which is either cyclostationary or almost cyclostationary in discrete-time (DT), depending on whether the symbol rate of the interference is synchronized with the sampling rate, or it is not. In this work we characterize the capacity of DT interference-limited communications channels, in which the interference is modeled as an additive sampled cyclostationary Gaussian noise. For the case of synchronous sampling, capacity can be obtained in closed form as a direct application of our previous work. When sampling is asynchronous, the resulting channel is not information stable, thus classic information-theoretic tools are not applicable. Using information spectrum methods, we prove that capacity can be obtained as the limit of a sequence of capacities of DT channels with additive cyclostationary noise. Our results facilitate the characterization of the impact of variations in the sampling rate and sampling time offset on the capacity of the resulting DT channel. In particular, it is demonstrated that minor variations in the sampling period can have a notable effect on capacity.

Original languageEnglish
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers
Pages742-746
Number of pages5
ISBN (Electronic)9781538692912
DOIs
StatePublished - 1 Jul 2019
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: 7 Jul 201912 Jul 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2019-July
ISSN (Print)2157-8095

Conference

Conference2019 IEEE International Symposium on Information Theory, ISIT 2019
Country/TerritoryFrance
CityParis
Period7/07/1912/07/19

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'On the Capacity of Sampled Interference-Limited Communications Channels'. Together they form a unique fingerprint.

Cite this