TY - GEN
T1 - On the Capacity of Sampled Interference-Limited Communications Channels
AU - Shlezinger, Nir
AU - Abakasanga, Emeka
AU - Dabora, Ron
AU - Eldar, Yonina C.
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/7/1
Y1 - 2019/7/1
N2 - Interference-limited communications plays an important role in future digital communication architectures. In such scenarios, the received signal is corrupted by an interfering communications signal, which is typically modeled as a cyclostationary process in continuous-time. To facilitate digital processing, the receiver typically samples the received signal synchronously with the symbol rate of the information signal. The sampled received signal thus contains an interference component which is either cyclostationary or almost cyclostationary in discrete-time (DT), depending on whether the symbol rate of the interference is synchronized with the sampling rate, or it is not. In this work we characterize the capacity of DT interference-limited communications channels, in which the interference is modeled as an additive sampled cyclostationary Gaussian noise. For the case of synchronous sampling, capacity can be obtained in closed form as a direct application of our previous work. When sampling is asynchronous, the resulting channel is not information stable, thus classic information-theoretic tools are not applicable. Using information spectrum methods, we prove that capacity can be obtained as the limit of a sequence of capacities of DT channels with additive cyclostationary noise. Our results facilitate the characterization of the impact of variations in the sampling rate and sampling time offset on the capacity of the resulting DT channel. In particular, it is demonstrated that minor variations in the sampling period can have a notable effect on capacity.
AB - Interference-limited communications plays an important role in future digital communication architectures. In such scenarios, the received signal is corrupted by an interfering communications signal, which is typically modeled as a cyclostationary process in continuous-time. To facilitate digital processing, the receiver typically samples the received signal synchronously with the symbol rate of the information signal. The sampled received signal thus contains an interference component which is either cyclostationary or almost cyclostationary in discrete-time (DT), depending on whether the symbol rate of the interference is synchronized with the sampling rate, or it is not. In this work we characterize the capacity of DT interference-limited communications channels, in which the interference is modeled as an additive sampled cyclostationary Gaussian noise. For the case of synchronous sampling, capacity can be obtained in closed form as a direct application of our previous work. When sampling is asynchronous, the resulting channel is not information stable, thus classic information-theoretic tools are not applicable. Using information spectrum methods, we prove that capacity can be obtained as the limit of a sequence of capacities of DT channels with additive cyclostationary noise. Our results facilitate the characterization of the impact of variations in the sampling rate and sampling time offset on the capacity of the resulting DT channel. In particular, it is demonstrated that minor variations in the sampling period can have a notable effect on capacity.
UR - http://www.scopus.com/inward/record.url?scp=85073149393&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2019.8849272
DO - 10.1109/ISIT.2019.8849272
M3 - Conference contribution
AN - SCOPUS:85073149393
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 742
EP - 746
BT - 2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PB - Institute of Electrical and Electronics Engineers
T2 - 2019 IEEE International Symposium on Information Theory, ISIT 2019
Y2 - 7 July 2019 through 12 July 2019
ER -