TY - GEN
T1 - On the complexity of higher order abstract Voronoi diagrams
AU - Bohler, Cecilia
AU - Cheilaris, Panagiotis
AU - Klein, Rolf
AU - Liu, Chih Hung
AU - Papadopoulou, Evanthia
AU - Zavershynskyi, Maksym
PY - 2013/7/23
Y1 - 2013/7/23
N2 - Abstract Voronoi diagrams [15,16] are based on bisecting curves enjoying simple combinatorial properties, rather than on the geometric notions of sites and circles. They serve as a unifying concept. Once the bisector system of any concrete type of Voronoi diagram is shown to fulfill the AVD properties, structural results and efficient algorithms become available without further effort. For example, the first optimal algorithms for constructing nearest Voronoi diagrams of disjoint convex objects, or of line segments under the Hausdorff metric, have been obtained this way [20]. In a concrete order-k Voronoi diagram, all points are placed into the same region that have the same k nearest neighbors among the given sites. This paper is the first to study abstract Voronoi diagrams of arbitrary order k. We prove that their complexity is upper bounded by 2k(n-k). So far, an O(k (n-k)) bound has been shown only for point sites in the Euclidean and Lp plane [18,19], and, very recently, for line segments [23]. These proofs made extensive use of the geometry of the sites. Our result on AVDs implies a 2k (n-k) upper bound for a wide range of cases for which only trivial upper complexity bounds were previously known, and a slightly sharper bound for the known cases. Also, our proof shows that the reasons for this bound are combinatorial properties of certain permutation sequences.
AB - Abstract Voronoi diagrams [15,16] are based on bisecting curves enjoying simple combinatorial properties, rather than on the geometric notions of sites and circles. They serve as a unifying concept. Once the bisector system of any concrete type of Voronoi diagram is shown to fulfill the AVD properties, structural results and efficient algorithms become available without further effort. For example, the first optimal algorithms for constructing nearest Voronoi diagrams of disjoint convex objects, or of line segments under the Hausdorff metric, have been obtained this way [20]. In a concrete order-k Voronoi diagram, all points are placed into the same region that have the same k nearest neighbors among the given sites. This paper is the first to study abstract Voronoi diagrams of arbitrary order k. We prove that their complexity is upper bounded by 2k(n-k). So far, an O(k (n-k)) bound has been shown only for point sites in the Euclidean and Lp plane [18,19], and, very recently, for line segments [23]. These proofs made extensive use of the geometry of the sites. Our result on AVDs implies a 2k (n-k) upper bound for a wide range of cases for which only trivial upper complexity bounds were previously known, and a slightly sharper bound for the known cases. Also, our proof shows that the reasons for this bound are combinatorial properties of certain permutation sequences.
KW - Abstract Voronoi diagrams
KW - Voronoi diagrams
KW - computational geometry
KW - distance problems
KW - higher order Voronoi diagrams
UR - https://www.scopus.com/pages/publications/84880321315
U2 - 10.1007/978-3-642-39206-1_18
DO - 10.1007/978-3-642-39206-1_18
M3 - Conference contribution
AN - SCOPUS:84880321315
SN - 9783642392054
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 208
EP - 219
BT - Automata, Languages, and Programming - 40th International Colloquium, ICALP 2013, Proceedings
T2 - 40th International Colloquium on Automata, Languages, and Programming, ICALP 2013
Y2 - 8 July 2013 through 12 July 2013
ER -