Abstract
It was recently shown that SVD and matrix inversion can be approximated in quantum log-space [1] for well formed matrices. This can be interpreted as a fully logarithmic quantum approximation scheme for both problems. We show that if prBQL=prBPL then every fully logarithmic quantum approximation scheme can be replaced by a probabilistic one. Hence, if classical algorithms cannot approximate the above functions in logarithmic space, then there is a gap already for languages, namely, prBQL prBPL. On the way we simplify a proof of Goldreich for a similar statement for time bounded probabilistic algorithms. We show that our simplified algorithm works also in the space bounded setting (for a large set of functions) whereas Goldreich's approach does not seem to apply in the space bounded setting.
Original language | English |
---|---|
Pages (from-to) | 750-753 |
Number of pages | 4 |
Journal | Information Processing Letters |
Volume | 115 |
Issue number | 10 |
DOIs | |
State | Published - 15 Sep 2014 |
Externally published | Yes |
Keywords
- Approximation algorithms
- Computational complexity
- Randomized algorithms
- Space bounded approximation schemes
- Space bounded computation
- Space bounded quantum computation
ASJC Scopus subject areas
- Theoretical Computer Science
- Signal Processing
- Information Systems
- Computer Science Applications