Abstract
Teamwork demands agreement among team-members to collaborate and coordinate effectively. When a disagreement between teammates occurs (due to failures), team-members should ideally diagnose its causes, to resolve the disagreement. Such diagnosis of social failures can be expensive in communication and computation overhead, which previous work did not address. We present a novel design space of diagnosis algorithms, distinguishing several phases in the diagnosis process, and providing alternative algorithms for each phase. We then combine these algorithms in different ways to empirically explore specific design choices in a complex domain, on thousands of failure cases. The results show that centralizing the diagnosis disambiguation process is a key factor in reducing communications, while run-time is affected mainly by the amount of reasoning about other agents. These results contrast sharply with previous work in disagreement detection, in which distributed algorithms reduce communications.
Original language | English |
---|---|
Pages (from-to) | 370-375 |
Number of pages | 6 |
Journal | IJCAI International Joint Conference on Artificial Intelligence |
State | Published - 1 Dec 2003 |
Externally published | Yes |
Event | 18th International Joint Conference on Artificial Intelligence, IJCAI 2003 - Acapulco, Mexico Duration: 9 Aug 2003 → 15 Aug 2003 |
ASJC Scopus subject areas
- Artificial Intelligence