TY - JOUR
T1 - On the Mechanism of Heterogeneous Water Oxidation Catalysis
T2 - A Theoretical Perspective
AU - Patra, Shanti Gopal
AU - Meyerstein, Dan
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/11/1
Y1 - 2022/11/1
N2 - Earth abundant transition metal oxides are low-cost promising catalysts for the oxygen evolution reaction (OER). Many transition metal oxides have shown higher OER activity than the noble metal oxides (RuO2 and IrO2). Many experimental and theoretical studies have been performed to understand the mechanism of OER. In this review article we have considered four earth abundant transition metal oxides, namely, titanium oxide (TiO2), manganese oxide/hydroxide (MnOx/MnOOH), cobalt oxide/hydroxide (CoOx/CoOOH), and nickel oxide/hydroxide (NiOx/NiOOH). The OER mechanism on three polymorphs of TiO2: TiO2 rutile (110), anatase (101), and brookite (210) are summarized. It is discussed that the surface peroxo O* intermediates formation required a smaller activation barrier compared to the dangling O* intermediates. Manganese-based oxide material CaMn4O5 is the active site of photosystem II where OER takes place in nature. The commonly known polymorphs of MnO2; α-(tetragonal), β-(tetragonal), and δ-(triclinic) are discussed for their OER activity. The electrochemical activity of electrochemically synthesized induced layer δ-MnO2 (EI-δ-MnO2) materials is discussed in comparison to precious metal oxides (Ir/RuOx). Hydrothermally synthesized α-MnO2 shows higher activity than δ-MnO2. The OER activity of different bulk oxide phases: (a) Mn3O4(001), (b) Mn2O3(110), and (c) MnO2(110) are comparatively discussed. Different crystalline phases of CoOOH and NiOOH are discussed considering different surfaces for the catalytic activity. In some cases, the effects of doping with other metals (e.g., doping of Fe to NiOOH) are discussed.
AB - Earth abundant transition metal oxides are low-cost promising catalysts for the oxygen evolution reaction (OER). Many transition metal oxides have shown higher OER activity than the noble metal oxides (RuO2 and IrO2). Many experimental and theoretical studies have been performed to understand the mechanism of OER. In this review article we have considered four earth abundant transition metal oxides, namely, titanium oxide (TiO2), manganese oxide/hydroxide (MnOx/MnOOH), cobalt oxide/hydroxide (CoOx/CoOOH), and nickel oxide/hydroxide (NiOx/NiOOH). The OER mechanism on three polymorphs of TiO2: TiO2 rutile (110), anatase (101), and brookite (210) are summarized. It is discussed that the surface peroxo O* intermediates formation required a smaller activation barrier compared to the dangling O* intermediates. Manganese-based oxide material CaMn4O5 is the active site of photosystem II where OER takes place in nature. The commonly known polymorphs of MnO2; α-(tetragonal), β-(tetragonal), and δ-(triclinic) are discussed for their OER activity. The electrochemical activity of electrochemically synthesized induced layer δ-MnO2 (EI-δ-MnO2) materials is discussed in comparison to precious metal oxides (Ir/RuOx). Hydrothermally synthesized α-MnO2 shows higher activity than δ-MnO2. The OER activity of different bulk oxide phases: (a) Mn3O4(001), (b) Mn2O3(110), and (c) MnO2(110) are comparatively discussed. Different crystalline phases of CoOOH and NiOOH are discussed considering different surfaces for the catalytic activity. In some cases, the effects of doping with other metals (e.g., doping of Fe to NiOOH) are discussed.
KW - DFT+U
KW - cobalt oxide
KW - heterogeneous OER
KW - manganese oxide
KW - nickel oxide
KW - titanium oxide
UR - http://www.scopus.com/inward/record.url?scp=85141558816&partnerID=8YFLogxK
U2 - 10.3390/inorganics10110182
DO - 10.3390/inorganics10110182
M3 - Review article
AN - SCOPUS:85141558816
SN - 2304-6740
VL - 10
JO - Inorganics
JF - Inorganics
IS - 11
M1 - 182
ER -