On the Neumann (p, q)-eigenvalue problem in Hölder singular domains

Prashanta Garain, Valerii Pchelintsev, Alexander Ukhlov

Research output: Contribution to journalArticlepeer-review

Abstract

In the article we study the Neumann (p, q)-eigenvalue problems in bounded Hölder γ-singular domains Ωγ⊂Rn. In the case 1<p<∞ and 1<q<pγ∗ we prove solvability of this eigenvalue problem and existence of the minimizer of the associated variational problem. In addition, we establish some regularity results of the eigenfunctions and some estimates of (p, q)-eigenvalues.

Original languageEnglish
Article number172
JournalCalculus of Variations and Partial Differential Equations
Volume63
Issue number7
DOIs
StatePublished - 1 Sep 2024

Keywords

  • 30C65
  • 35A01
  • 35J92
  • 35P15
  • 35P30
  • 46E35

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'On the Neumann (p, q)-eigenvalue problem in Hölder singular domains'. Together they form a unique fingerprint.

Cite this