Abstract
A frequently used measure for the extent of cooperativity in ligand binding by allosteric proteins is the Hill coefficient. Hill coefficients can be measured for steady-state kinetic data and also for transient kinetic data. Here, the relationship between the two types of Hill coefficients is analysed. It is shown that a value of 1 for the ratio of the two Hill coefficients is a test for a concerted ligand-induced transition between two conformations of the protein, in accordance with the Monod-Wyman-Changeux model. A value of 1 for this ratio has recently been observed for a series of chaperonin GroEL mutants suggesting that ATP-induced allosteric transitions in this protein are concerted. (C) 2000 Society for Mathematical Biology.
Original language | English |
---|---|
Pages (from-to) | 241-246 |
Number of pages | 6 |
Journal | Bulletin of Mathematical Biology |
Volume | 62 |
Issue number | 2 |
DOIs | |
State | Published - 1 Jan 2000 |
Externally published | Yes |
ASJC Scopus subject areas
- General Neuroscience
- Immunology
- General Mathematics
- General Biochemistry, Genetics and Molecular Biology
- General Environmental Science
- Pharmacology
- General Agricultural and Biological Sciences
- Computational Theory and Mathematics