Abstract
We show that a one-to-one bounded linear operator T from a separable Banach space E to a Banach space X is a G δ-embedding if and only if every T-null tree in S E has a branch which is a boundedly complete basic sequence. We then consider the notions of regulators and skipped blocking decompositions of Banach spaces and show, in a fairly general set up, that the existence of a regulator is equivalent to that of special skipped blocking decomposition. As applications, the following results are obtained. (a) A separable Banach space E has separable dual if and only if every w*-null tree in S E* has a branch which is a boundedly complete basic sequence. (b) A Banach space E with separable dual has the point of continuity property if and only if every w-null tree in S E has a branch which is a boundedly complete basic sequence. We also give examples to show that the tree hypothesis in both the cases above cannot be replaced in general with the assumption that every normalized w*-null (w-null in (b)) sequence has a subsequence which is a boundedly complete basic sequence.
Original language | English |
---|---|
Pages (from-to) | 27-48 |
Number of pages | 22 |
Journal | Israel Journal of Mathematics |
Volume | 167 |
Issue number | 1 |
DOIs | |
State | Published - 1 Oct 2008 |
ASJC Scopus subject areas
- General Mathematics