One-shot image recognition using prototypical encoders with reduced hubness

Chenxi Xiao, Naveen Madapana, Juan Wachs

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Humans have the innate ability to recognize new objects just by looking at sketches of them (also referred as to proto-type images). Similarly, prototypical images can be used as an effective visual representations of unseen classes to tackle few-shot learning (FSL) tasks. Our main goal is to recognize unseen hand signs (gestures) traffic-signs, and corporate-logos, by having their iconographic images or prototypes. Previous works proposed to utilize variational prototypical-encoders (VPE) to address FSL problems. While VPE learns an image-to-image translation task efficiently, we discovered that its performance is significantly hampered by the so-called hubness problem and it fails to regulate the representations in the latent space. Hence, we propose a new model (VPE++) that inherently reduces hubness and incorporates contrastive and multi-task losses to increase the discriminative ability of FSL models. Results show that the VPE++ approach can generalize better to the unseen classes and can achieve superior accuracies on logos, traffic signs, and hand gestures datasets as compared to the state-of-the-art.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021
PublisherInstitute of Electrical and Electronics Engineers
Pages2251-2260
Number of pages10
ISBN (Electronic)9780738142661
DOIs
StatePublished - 1 Jan 2021
Externally publishedYes
Event2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021 - Virtual, Online, United States
Duration: 5 Jan 20219 Jan 2021

Publication series

NameProceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021

Conference

Conference2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021
Country/TerritoryUnited States
CityVirtual, Online
Period5/01/219/01/21

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'One-shot image recognition using prototypical encoders with reduced hubness'. Together they form a unique fingerprint.

Cite this