Operator theory and function theory in drury-arveson space and its quotients

Orr Shalit

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

17 Scopus citations

Abstract

The Drury-Arveson space H2 d (also known as symmetric Fock space or the dshift space), is the reproducing kernel Hilbert space on the unit ball of Cd with the kernel k(z,w) = (1 - (z.wi)-1. The operators Mzi W f (z) (mapping) zi f .z/, arising from multiplication by the coordinate functions z1,....zd, form a commuting dtupleMz = (Mz1,.....Mzd). The d-tupleMz-which is called the d-shift-gives the Drury-Arveson space the structure of a Hilbert module. This Hilbert module is arguably the correct multivariable generalization of the Hardy space on the unit disc H2(D). It turns out that the Drury-Arveson spaceH2 d plays a universal role in operator theory (every pure, contractiveHilbert module is a quotient of an ampliation of H2 d ) as well as in function theory (every irreducible complete Pick space is essentially a restriction of H2 d to a subset of the ball). These universal properties resulted in the Drury-Arveson space being the subject of extensive studies, and the theory of the Drury-Arveson is today broad and deep. This survey aims to introduce the Drury-Arveson space, to give a panoramic view of the main operator theoretic and function theoretic aspects of this space, and to describe the universal role that it plays in multivariable operator theory and in Pick interpolation theory.

Original languageEnglish
Title of host publicationOperator Theory
PublisherSpringer Basel
Pages1125-1180
Number of pages56
Volume2-2
ISBN (Electronic)9783034806671
ISBN (Print)9783034806664
DOIs
StatePublished - 4 Aug 2015

Fingerprint

Dive into the research topics of 'Operator theory and function theory in drury-arveson space and its quotients'. Together they form a unique fingerprint.

Cite this